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Introduction



• manipulations of higher-arity arrays ("array programming") is now an extremely 
common and practical concern


• used in:


• data science, data visualization


• data warehousing


• machine learning, deep learning


• main players:


• data: numpy, scipy, R, pandas


• DL: torch, tensorflow, jax

Array programming



Tensors vs arrays
In physics

• tensors are objects that vary over space and time


• tensors transform in particular ways under spacetime symmetries


• tensors are identified with multilinear maps between vector spaces


• tensors (=maps) have "input" (contravariant) and "output" (covariant) indices


• a (p,q) tensor has p "input" and q "output" indices


• inputs can be switched with outputs (= presence of a metric) 


• choosing a basis for underlying vector spaces establishes unique representations 
as vectors, matrices, etc.


• tensors can be contracted, eliminating indices: linear operations



Tensors vs arrays
In computing

• tensors are arrays


• tensors do not represent maps between vector spaces


• tensors can be broadcasted, aggregated, and sliced


• aggregations are typically non-linear 


• tensors indices reflect fundamentally different conceptual quantities:


• color channel vs pixel position


• batch number vs feature dimension


• these cannot be transformed into one another (= lack of a metric)



• we don't care about the physics meaning of tensors


• for brevity I'll use arrays rather than hypermatrices


• English definition: collection of objects ordered in a regular way

Tensors vs arrays



Basic theory



Basic theory
Scalars, vectors, matrices

• arrays have a "key space" and a "value space"


• three prototypical examples:


• scalars (arity 0) S = 9


• vectors (arity 1) V = [1 2 3]


• matrices (arity 2) M = [ [1 2 3] 
	 	 	       [4 5 6] ] 
   



Basic theory
Notation

• we use the convention of nested lists to write arrays with multiple axes


• no axes S =      9


• 1 axis V =   [1 2 3]


• 2 axes M = [ [1 2 3] 
	 	       [4 5 6] ]


• more deeply nested lists correspond to higher-numbered axes


• we can use colors to make this correspondence clearer:


M = [ [1 2 3]       axis 2 
      [4 5 6] ]     axis 1



Basic theory
Example: color images

• images are very common data structures


• these have 3 axes: x,y,c


•  x is the x-position of a pixel ∈ 1..W


•  y is the y-position of a pixel ∈ 1..H


•  c is the color channel ∈ {red, green, 
blue} or conventionally {1,2,3} 


• value is the intensity ∈ [0, 1] ⊂ ℝ  


• but in ordinary arrays, axes are ordered, 
not named...



Basic theory
Example: color images

• but with classical arrays, axes are ordered, not named...


• these axes are ordered in two common ways:


• y,x,c


• c,y,x


• semantically, a distinction without a difference, but required to know for 
(classical) array programming



Basic theory
Array terminology
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Basic theory
Array terminology

array collection of cells

cell
slot in an array; 
labeled by key;


filled with a value

key
position of a cell in an array; 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Basic theory
Simplifying assumption

• part spaces are usually sets of the form 1..n = {1,2,...,n}


• key space is the space of tuples formed from these part spaces


• for n-array, key space can be denoted by a shape written ⟨s1,s2,...,sn⟩


• a matrix with 3 rows and 2 columns has shape ⟨3,2⟩


⟨3,2⟩ = { (1,1), (1,2), (2,1), (2,2), (3,1), (3,2) }


• this is the Cartesian product of part spaces 1..3 and 1..2


• a scalar has a shape ⟨⟩ ; key space is singleton set ⟨⟩ = {()}


• abstracting, we can consider general part spaces that aren't consecutive natural 
numbers -- the total order on ℕ is usually not used or needed



Basic theory
Arrays as functions

• we can see an array A as a function from its key space to its value space


• arrays are just lookup tables, to use computer science terminology


• array algebra is the algebra that manipulates lookup tables


• an n-array is just a function of n variables


• or equivalently: a unary function with a single argument that is an n-tuple


• cell value A[1,2,3] is shorthand for function application A( (1,2,3) ) 


• later: rainbow arrays replace this tuple with a record



Array examples
Examples

name arity example shape entries

scalar 0 9 () () → 9

vector 1 [ 9 1 5 ] (3) (3) → 5

matrix 2
[ [9 1 5]


    [3 2 6] ]
(2,3)

(1,1) → 9 
(2,3) → 6

3-array 3
[ [ [0 1] [ 0 10] ]

  [ [2 3] [20 30] ]


    [ [4 5] [40 50] ] ]
(3,2,2)

(1,1,1) →  0 
(2,1,1) →  2

(3,2,2) → 50

4-array 4
[ [[ [1 2] ]]

  [[ [3 4] ]]


    [[ [5 6] ]] ]
(3,1,1,2)

(1,1,1,1) →  1 
(2,1,1,1) →  3

(3,1,1,2) →  6



Array algebra



• define some array ("output array") that depends on other arrays ("input arrays")


• to do this, work backwards: derive output cell from input cells


• examples:


•  M[i,j] ≡ B[i] + C[j]


•      V[i] ≡ V[i] * M[i]


•  M[i,j] ≡ V[i] - V[j]


•  M[i,j] ≡ S[]


• cellwise definitions are the most flexible kind of definition


• but can be decomposed into other, primitive definitions

Cellwise definitions 



Colorful notation
• cellwise definitions: instead of using symbols to indicate parts:


P[i,j] ≡ A[i] + B[j]


• often we will use colors to indicate parts: 


P[●,●] ≡ A[●] + B[●]


• at a glance, we can easily see matching parts...


• note: this is just a visual aid, it's not semantically meaningful


• this also gestures to the rainbow at the end of the talk



• unary operations: have a single input array


• three common unary operations, corresponding to how they modify # of axes


• transposition:  output has = # of axes as input


• broadcasting:  output has > # axes than input


• aggregation:  output has < # axes than input


• folding:  output has < # axes than input


• n-ary operations: have multiple input arrays


• elementwise:  output has = # axes as every input


• picking:  output has = # axes as first input

Operations



Unary operations



• "smear" lower-arity arrays across additional novel axes


• "repeats" cells across the novel axes


• example: 


• broadcast a scalar (0-array) into a vector (1-array): 


• broadcast a vector into a matrix:  XXX missing image


• cellwise:


• scalar ➝ vector:    V[i] ≡ S[]


• vector ➝ matrix: M[r,c] ≡ V[r]	 M[r,c] ≡ V[c]


• scalar ➝ matrix: M[r,c] ≡ S[]

Broadcasting



• broadcasting notated by Aa➜s


• a is the position in axis list where an axis of size s will be inserted


• A1➜s indicates adding axis at beginning


• An➜s indicates adding axis just before position 𝑛 


• example, vector U = [1 2 3]


 U2➜3 = 	[[1 1 1]   U1➜3 = 	 [[1 2 3] 
	  [2 2 2]        	  [1 2 3] 
	  [3 3 3]]	  	  [1 2 3]


• example: scalar S = 9


S1➜2,2➜3 	= 91➜2,2➜3 = [9 9]2➜3 
      	= [[9 9 9] [9 9 9]]

Broadcasting



• from the function perspective, An➜ takes one more argument than A, but drops it 
and calls A


   An➜[..., ●n-1, ●n, ●n+1,...] 
≡   A[..., ●n-1,      ●n+1,...]

Broadcasting



Transposition
"Axis yoga"

• transposition re-arranges the order of axes:


• transpose a matrix:  Mᵀ[i,j] ≡ M[j,i]


• change image convention:  I'[x,y,c] ≡ I[c,x,y]


• notate this as a superscript describing the axis permutation A𝜎:


•  A𝜎[●1,●2,...,●n] = A[●𝜎(1),●𝜎(2),...,●𝜎(n)]


•  Mᵀ = M(1,2)


•  I' = I(1,2,3)



• aggegration w.r.t. any commutative monoid


• for fields: sum, mean


• for semirings:


• ℝ, ℤ, ℕ: plus, times, min, max


• 𝔹: and ∧, or ∨, xor ⊻ 


• subscript picks the axis to aggregate (= remove):


• sum2(F)[●,●] ≡ ∑● F[●,●,●] = F[●,1,●] + F[●,2,●] + ...


• min1(G)[●] ≡ min● G[●,●] = min(G[1,●], G[2,●], ...)


• (∧1F)[] ≡ and● F[●] = F[1] ∧ F[2] ∧ ...

Aggregation



• see an array A as a map A:𝕂->𝕍 from key space 𝕂 to value space 𝕍


• e.g. a real M of shape ⟨3,2⟩ is a map A:⟨3,2⟩-> 


•  ⟨3,2⟩ stands for the set of tuples { (i,j) | i ∈ 1..3, j ∈ 1..2 }


• M = [ [1 2] [3 4] [5 6] ] is a vector-of-vectors in two ways:


• 3-vector of row vectors with cells [1 2], [3 4], [5 6]


• 2-vector of column vectors with cells: [1 3 5], [2 4 6]


• this corresponds to folding the map A:⟨3,2⟩->  into:


• a 3-vector whose cells are 2-vectors A:⟨3⟩->⟨2⟩-> 


• a 2-vector whose cells are 3-vectors A:⟨2⟩->⟨3⟩->  

ℝ

ℝ

ℝ

ℝ

Folding



• the isomorphism between A:X⨉Y->Z and A:X->Y->Z is called currying; 
(generalized) currying of lookup tables is array folding


• we denote folding the n'th axis of A with An≻ 


   An≻[...,●n-1,   ●n+1,...][●] 
≡   A[...,●n-1,●n,●n+1,...]


• folding the n'th axis moves that axis into the value space; cells become vectors


• folding multiple axes simultaneously make cells into arbitrary arrays:


• example: fold the 1st and 3rd axes of a 3-array A, giving a vector of matrices:


A1,3≻[●][●,●] ≡ A[●,●,●]

Folding



Folding
row vectors of a matrix

M = [ [1 2] 
      [3 4] 
      [5 6] ]


• cellwise:


M2≻[●][●] ≡ M[●,●] 


• evaluate M2≻[3]


M2≻[3][1] = M[3,1] = 5 
M2≻[3][2] = M[3,2] = 6	  
 
M2≻[3] = [5 6]


• M2≻[3] is the third row vector of M


• M2≻ is a vector of row vectors of M



Folding
column vectors of a matrix

M = [ [1 2] 
      [3 4] 
      [5 6] ]


• cellwise:


M1≻[●][●] ≡ M[●,●] 


• evaluate M1≻[1]


M1≻[1][1] = M[1,1] = 1 
M1≻[1][2] = M[2,1] = 3	  
M1≻[1][3] = M[3,1] = 5 
 
M1≻[1] = [1 3 5]


• M1≻[1] is the first column vector of M


• M1≻ is a vector of column vectors of M



N-ary operations



• combine arrays w.r.t. any n-ary operation


• for fields: unary operations -□, 1/□ 


• for semirings:


• ℝ, ℤ, ℕ:  n-ary plus, times, min, max


• 𝔹:  n-ary and, or, xor, unary not


• e.g. cellwise definitions:


•  (A + B)[●] ≡ A[●] * B[●]


•  (A ∧ B)[●,●] ≡ A[●,●] ∧ B[●,●]


•  (¬A)[●,●,●] ≡ ¬A[●,●,●]

Elementwise 



• tensor product of two vectors via broadcasting + elementwise


(U ⊗ V)[●,●] ≡  U[●  ] *   V[  ●]  
            = U2➜[●,●] * V1➜[●,●] 
            = (U2➜ *  V1➜)[●,●] 
            ∴ 
 U ⊗ V       = U2➜ *  V1➜

"Tensor product"



• matrix multiplication M⋅N via broadcasting + elementwise + aggregation


• (M⋅N)[●,●]	=  ∑●   M[●,●  ] *   N[  ●,●] 
	 =  ∑●  M3➜[●,●,●] * N1➜[●,●,●] 
	 =  ∑●  (M3➜ * N1➜)[●,●,●] 
	 = sum2(M3➜ * N1➜)[●,●] 
	 ∴ 
 M⋅N	 = sum2(M3➜ * N1➜)

Matrix multiplication



• using an array of positions P to pick cells in another array A


• written A[P]


• value space of picking array P must be key space of target array A


   P : 𝕂 -> ⟨s1,s2,...⟩ 
   A :     ⟨s1,s2,...⟩ -> 𝕍 
A[P] : 𝕂              ->                𝕍


• cellwise definition: (A[P])[●,●,●,...] = A[P[●,●,●,...]]


• this is just ordinary function composition of lookup tables!

Picking



• examples: picking from a vector A = [10 20 30]


P = 2	 A[P] = 20


P = [3 1 2]	 A[P] = [30 10 20]


P = [[1] [2]]	 A[P] = [[10] [20]] 

• examples: picking from a matrix A = [[10 20] [30 40]]


P = (1,1)	 A[P] = 10


P = [(1,1) (2,2) (2,1)]	 A[P] = [10 40 30]


P = [[ (2,1) ]]	 A[P] = [[ 30 ]]

Picking



Critique



Key point: keys are tuples

• Classic arrays = cells identified by tuples of parts


• Tuples are ordered lists


• Is this a good choice?



Why tuples?
Why are tuples a good choice?

• They are simple, familiar data structures


• Positionally-ordered arguments are the norm in programming


• Make machine implementation easy:


• Arrays must be laid out in consecutive positions in linear memory (RAM)


• This requires an ordering of axes to decide how to compile an abstract key like 
(3,1,2) from shape (3,3,3) into an offset into memory:


offset = (3−1) * 9 + (1−1) * 3 + (2−1) = 19



Why not tuples?
Why are tuples not a good choice?

• compositions of arrays require matching corresponding axes from the arrays


• getting this matching right (e.g. color channel of images with color channel of 
a tinting operation) may require fiddly transposition + broadcasting


• throws away semantic information (e.g. axis 3 = color channel), yielding endless 
bugs and tedious documentation to keep track of axes


• similar situation to early days of programming: 


• registers in a CPU are numbered, but humans like to use named variables


• the allocation of variables to registers constantly changes


• this is why we moved from assembly code to high level programming 
langauges



Rainbow arrays



• solution: replace key tuples with key records


• tuple:  (5, 3, 2)


• record:  (a=5 b=3 c=2)


• the tuple has components labeled by 1, 2, and 3


• the record has fields labeled by a, b, and c

Records



• relationship to axes:


• tuples: axis 1 associated with the 1st slot of every key tuple


• records: axis a associated with the "a" field of every key record


• relationship to shapes:


• ⟨3,2,4⟩ 	 ≡ { (i,j,k)       | 1≤i≤3, 1≤j≤2, 1≤k≤4 }


• ⟨a=3 b=2 c=4⟩	≡ { (a=i b=j c=k) | 1≤i≤3, 1≤j≤2, 1≤k≤4 }

Records



Records
Rainbow notation

• instead of writing (a=5 b=3 c=2) we color code the fields:


a b c


• and then use these colors to distinguish fields:


(5 3 2)


• note there are no commas, as this is not a tuple (where order of components 
matters), but a rainbow notation for a record (which has no order of fields)


• similarly, the shape of a matrix with 3 rows and 4 columns is


⟨3 4⟩ ≡ ⟨4 3⟩ ≡ ⟨row=3 column=4⟩ 



Records
Rainbow notation

• for array lookup, we replace A[i,j,k] with A[●●●]


• notice again the lack of commas, since A[●●●] ≡ A[●●●] ≡ A[●●●] ≡ ...


• cell value A[●●●] is shorthand for function application A( (●●●) )


A[●●●] ≡ A( (●●●) ) ≡ A( (r=● g=● b=● ) )


• in colorful notation A[●,●,●] color is a visual aid; only order is meaningful


• in rainbow notation A[●●●] order is meaningless; only color is meaningful


• to denote the colors of an array (spectrum?), write A : ⟨●●●⟩



• example: a color image of 4 pixels high by 6 pixels wide





• in tuple formalism: image has shape ⟨4,6,3⟩ under y, x, c convention


• in record formalism: image has shape ⟨y=4 x=6 c=3⟩

Records



• example: a color image of 4 pixels high by 6 pixels wide





• in tuple formalism:  highlighted sub-pixel has key (2,6,1)


• in record formalism:  highlighted sub-pixel has shape ⟨y=2 x=6 c=1⟩

Records



• how do rainbow arrays reformulate 
our algebra?


• transposition is meaningless, since 
axes do not have order


• axes can however be recolored, a 
new operation


• aggregation is unchanged


• folding is unchanged


• elementwise operation automatically 
broadcasts over missing colors


• broadcasting is hence unnecessary


• we eliminate one operation from our 
API


• we also gain semantic clarity, since 
the axes preserve their meaning 
across compositions

Reorganizing the API



• transposition reordered axes but preserved arity; recoloring is similar


• we have a matrix M :⟨●●⟩ but we want a matrix M̂  :⟨●●⟩


• apply a map 𝜎={●↦●} to "translate" keys of M̂  to keys of M 


• cellwise: M𝜎[i j] ≡ M[i j]


• conceptually, 𝜎 :⟨●●⟩->⟨●●⟩ renames a field of a key record:


• if underlying field names are r, g, b


𝜎((r=i b=j)) = (r=i g=j)


• in rainbow notation:


𝜎((i j)) = (i j)

Recoloring



• this is a special case of picking


• e.g., if we want to recolor M :⟨2 3⟩ to M̂  :⟨2 3⟩, we can using picking matrix:


P = [ [ (1 1) (1 2) (1 3) ] 
      [ (2 2) (2 3) (2 3) ] ]


• this has the property that P[i j] = (i j) as needed, so M̂  = M[P]


• this is also true of transposition: a transposition is a particular kind of picking in 
which we look up the transposed keys in the original key


• we can also express broadcasting (and diagonal-taking) as a special case of 
recoloring, if we allow the map 𝜎 to be a more general relation than a function 
(specifically, it must be the pre-image of a total function)

Recoloring as picking



• rainbows: elementwise and broadcasting are combined


• rule: broadcast all arrays to have common set of colors, then apply operation 
cellwise


• result has union of colors of inputs


• yields unique array op for each value op (by "lifting")

Elementwise



Elementwise
vector times vector

• shared color: 


   U : ⟨●⟩ 
   V : ⟨●⟩ 
U * V : ⟨●⟩	  
 
(U * V)[●] ≡ U[●] * V[●] 
 
[1 2 3] * [0 1 2] = [0 2 6]




Elementwise
vector times scalar

• scalar has no colors, so no sharing!


   S : ⟨⟩ 
   V : ⟨●⟩	  
S * V : ⟨●⟩	  
 
(S * V)[●] ≡ S[] * V[●] 
 
5 * [1 2 3] = [5 10 15]



Elementwise
vector times vector

• no shared color: 


   U : ⟨●⟩ 
   V : ⟨●⟩	  
U * V : ⟨●●⟩	  
 
(U * V)[●●] ≡ U[●] * V[●] 
 
[1 2 3] * [0 1 2] = [[0 0 0] [1 2 3] [2 4 6]]



Elementwise
matrix times matrix

• 2 shared colors: 


   M : ⟨●●⟩	  
   N : ⟨●●⟩	  
M * N : ⟨●●⟩	  
 
(M * N)[●●] ≡ M[●●] * N[●●] 
 
[[1 2]  * [[0 1]  =  [[0 2] 
 [3 4]]    [1 0]]     [3 0]]



Elementwise
matrix times matrix

• 1 shared colors: 


   M : ⟨●●⟩	  
   N : ⟨●●⟩	  
M * N : ⟨●●●⟩	  
 
(M * N)[●●●] ≡ M[●●] * N[●●] 
 
[[1 2]  * [[0 1]  =  [[1*[0 1] 2*[1 0]]   =  [[[0 1] [2 0]] 
 [3 4]]    [1 0]]     [3*[0 1] 4*[1 0]]]      [[0 3] [4 0]]]



Elementwise
matrix times matrix

• 0 shared colors: 


   M : ⟨●●⟩	  
   N : ⟨●●⟩	  
M * N : ⟨●●●●⟩	 
 
(M * N)[●●●●] ≡ M[●●] * N[●●] 
 
[[1 2]  * [[0 1]  = [ [ [[0 1]  [1 0]] [[0 2] [2 0]] ]   
 [3 4]]    [1 0]]     [ [[0 3]  [3 0]] [[0 4] [4 0]] ] ]



Elementwise
Example: matrix multiplication

• if M and N share one color, we can obtain matrix multiplication via:


  M : ⟨●●⟩ 
  N : ⟨●●⟩ 
M⋅N : ⟨●●⟩ 
 
M⋅N ≡ sum(M * N)


• if M and N share no colors, we obtain Kronecker product of matrices


• if they share both colors, we obtain Hadamard product



Elementwise
Example: tinting an image

• for color coding x, y, c image array I :⟨●●●⟩


• for a tinting factor T :⟨●⟩ such T = [1.0, 1.0, 0.5] as which halves blue 
channel, we can apply the tint simply as:


I * T


• this is simpler and more straightforward than the classic picture, which requires 
broadcasting to account for x and y axes



• aggregation, folding, picking remain as before


• however, we color these operations rather than subscript them


• e.g. for F :⟨●●●⟩ we can "sum over green":


sum(F)[●●] ≡ ∑● F[●●●] = F[●1●] + F[●2●] + ...

Other operations



Takeaways



Advantages

• rainbow array algebra keeps semantic meaning (e.g. color channel, batch 
number, time) attached to array axes, and abandons axis order


• this leads to fewer fundamental operations, greater clarity


• compositional properties of this alternative formulation are underexplored (e.g. 
categorical foundation)


• the future of array programming: various deep learning practictioners (e.g. one of 
the inventors of Torch) are pushing for labeled axes to become the standard



Future directions

• alternative diagrammatic formulation in terms of part / key dataflow


• e.g. taking the diagonal is copying of flow, broadcasting is deleting a flow


• flows compose


• categorical foundations, and connections to profunctors


• software library for Mathematica


• explain connections to hypergraph rewriting


• e.g. matrix multiplication measures combinatorics of graph composition


• adjacency arrays of hypergraphs are... higher-arity arrays, obviously



• Rush: "Tensors considered harmful"


• Maclaurin, Paszke et al: Dex project


• Chiang, Rush, Barak: "Named Tensor Notation"


• Hoyer et al: XArray project


• Zapata-Carratala, Arsiwalla, Beynon: "Heaps of Fish"
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