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Introduction



Array programming

® manipulations of higher-arity arrays ("array programming") is now an extremely
common and practical concern

® used in:
® data science, data visualization
® data warehousing
® machine learning, deep learning
® main players:
® data: numpy, scipy, R, pandas

® DL: torch, tensorflow, jax



Tensors vs arrays

In physics

® tensors are objects that vary over space and time

® tensors transform in particular ways under spacetime symmetries

® tensors are identified with multilinear maps between vector spaces

® tensors (=maps) have "input" (contravariant) and "output" (covariant) indices
® a (p,q) tensor has p "input" and q "output" indices

® inputs can be switched with outputs (= presence of a metric)

® choosing a basis for underlying vector spaces establishes unique representations
as vectors, matrices, etc.

® tensors can be contracted, eliminating indices: linear operations



Tensors vs arrays

In computing

® tensors are arrays

® tensors do not represent maps between vector spaces

® tensors can be broadcasted, aggregated, and sliced
® aggregations are typically non-linear

e tensors indices reflect fundamentally different conceptual quantities:
® color channel vs pixel position
® batch number vs feature dimension

® these cannot be transformed into one another (= lack of a metric)



Tensors vs arrays

® we don't care about the physics meaning of tensors
e for brevity I'll use arrays rather than hypermatrices

® English definition: collection of objects ordered in a regular way



Basic theory



Basic theory

Scalars, vectors, matrices

® arrays have a "key space" and a "value space'

® three prototypical examples:

® scalars (arity O) S =9
® vectors (arity 1) vV = [1 2 3]
® matrices (arity 2) M=1[ [12 3]

[4 5 6] ]



Basic theory

Notation

® we use the convention of nested lists to write arrays with multiple axes

® NO axes S = 9

® 1 axis v = [1 2 3]

® D axes M=1[ [12 3]
[4 5 6] ]

® more deeply nested lists correspond to higher-numbered axes

® we can use colors to make this correspondence clearer:

M= [12 3] axis 2
(4 5 6] ] axis 1



Basic theory

Example: color images

® images are very common data structures
® these have 3 axes: x,vy,C
® X is the x-position of a pixel € 1..W
® vy is the y-position of a pixel € 1..H

® c isthe color channel € {red, green,
blue} or conventionally {1,2,3}

® value is the intensitye [0, 1] c R

® but in ordinary arrays, axes are ordered,
not named...




Basic theory

Example: color images

® but with classical arrays, axes are ordered, not named...
® these axes are ordered in two common ways:

® v,X,C

® C,y,X

® semantically, a distinction without a difference, but required to know for
(classical) array programming



Basic theory

Array terminology

value =




Basic theory

Array terminology

axis 1

axis 2

. value =

~cell —

(axis 2)

array collection of cells
slot in an array;
cell labeled by key;
filled with a value
ke position of a cell in an array;
Y a tuple of parts
axis key tuple position




Basic theory

Simplifying assumption

® part spaces are usually sets of theform1..n = {1,2, ... ,n}
® key space is the space of tuples formed from these part spaces
® for n-array, key space can be denoted by a shape written (s1,s2, ... ,Sn)
® a matrix with 3 rows and 2 columns has shape (3,2)
(3,2) = 1(1,1), (1,2), (2,1), (2,2), (3,1), (3,2) }
® this is the Cartesian product of part spaces 1..3 and 1..2
® a scalar has a shape () ; key space is singleton set () = {()}

® abstracting, we can consider general part spaces that aren't consecutive natural
numbers -- the total order on N is usually not used or needed



Basic theory

Arrays as functions

® we can see an array A as a function from its key space to its value space
® arrays are just lookup tables, to use computer science terminology

® array algebra is the algebra that manipulates lookup tables

® an n-array is just a function of n variables

® or equivalently: a unary function with a single argument that is an n-tuple

® cell value A[1,2,3] is shorthand for function application A(C (1,2,3) )

® |ater: rainbow arrays replace this tuple with a record



Array examples

Examples
name arity example shape entries
scalar 0 9 () () > 9
vector 1 [ 915 ] (3) (3) > 5
. [ [9 15 (1,1) » 9
matrix 2 i i 2,3
326] ] (2,3) (2,3) > 6
0 1] [ 0 10 (1,1,1) > 0
3-array 3 2 3] [20 30 (3,2,2) (2,1,1) > 2
4 5] [40 50 (3,2,2) > 50
1 2. (1,1,1,1) > 1
4-array A 3 4 (3,1,1,2)  [(2,1,1,1) > 3
56 (3,1,1,2) > 6




Array algebra




Cellwise definitions

® define some array (" ") that depends on other arrays ("input arrays")

e to do this, work backwards: derive output cell from input cells

® examples:
® Wli,jl = B[1]+C[]]
o [1] = V[1] *M[1]
® Mli,jl = vlii]l-VIjl
® Ml1,j] = SLI

e cellwise definitions are the most flexible kind of definition

® but can be decomposed into other, primitive definitions



Colortul notation

® cellwise definitions: instead of using symbols to indicate parts:

PL1,j] = Al1] +B[j]

® often we will use colors to indicate parts:

Ple,o] Ale] + B[e]

® at a glance, we can easily see matching parts...
® note: this is just a visual aid, it's not semantically meaningful

® this also gestures to the rainbow at the end of the talk



Operations

® unary operations: have a single input array

® three common unary operations, corresponding to how they modity # of axes

® transposition: has = # of axes as input
® broadcasting: has > # axes than input
® aggregation: has < # axes than input
¢ folding: has < # axes than input

® n-ary operations: have multiple input arrays
¢ elementwise: has = # axes as every input

® picking: has = # axes as first input



Unary operations



Broadcasting

® "smear" lower-arity arrays across additional novel axes
® "repeats” cells across the novel axes

® example:
® broadcast a scalar (0-array) into a vector (1-array):

® broadcast a vector into a matrix: XXX missing image

o cellwise:
® scalar — vector: V[i] = S[]
® vector = matrix: M[r,c] = V[r] M{r,c] = V[c]
® scalar  matrix: M[r,c] = S[]



Broadcasting

® broadcasting notated by Aa»s
® ais the position in axis list where an axis of size s will be inserted
® As indicates adding axis at beginning

* A™s indicates adding axis just before position n

® example, vectorU = [1 2 3]

U3 = [[1 1 1] U3 = [[1 2 3]
[2 2 2] [1 2 3]
[3 3 3]] [1 2 3]

® example: scalar S =9

G122,223 = Q1-2,223 = [9 9]2—>3
= [[9 9 9] [9 9 9]]



Broadcasting

® from the function perspective, A takes one more argument than A, but drops it
and calls A

An->[ cee ‘n—]_, ‘n, ‘n+1, oo e ]
= A[ coe .n—]_, .n+1; ooeo ]



Transposition
"Axis yoga"

® transposition re-arranges the order of axes:

MLy, 1]

® change image convention: I'[x,y,c] = I[c,x,y]

® transpose a matrix: MT[i, 7]

® notate this as a superscript describing the axis permutation A”:

e A’l®1,0), ... ,0,] = Al®s(1),0:(2), «ov ,®(n)]

M(1,2)

®
=
—]

1

1(1,2,3)

o
—
]



Aggregation
® aggegration w.r.t. any commutative monoid
e for fields: sum, mean

® for semirings:

o R, Z, N: plus, times, min, max

® B: and A, or v, xor V

® subscript picks the axis to aggregate (= remove):
 sumy(F)[e,0] = ), Fle,e,0] = Fle,1,0] + Fle,2,0] +
e mini(G)[e®] = mine G[e,®] = min(G[1,e], G[2,e], ...)

e (AMF)[] = ande F[®] = F[1] A F[2] A



Folding

® see an array A as a map A:K—=V from key space K to value space V

® c.g.areal Mof shape (3,2) isamap A:(3,2)—=R
® (3,2) stands forthesetof tuples{ (i,j) | i€ 1..3, je1..2}
oM = [ [1 2] [3 4] [5 6] ] isa vector-of-vectors in two ways:
® 3_vector of row vectors with cells [1 2], [3 4], [5 6]

® )_vector of column vectors with cells: [1 3 5], [2 4 6]

® this corresponds to folding the map A: (3,2) =R into:
® 3 3-vector whose cells are 2-vectors A:(3)>(2)>=R

® 3 2-vector whose cells are 3-vectors A:(2)—>(3)>=R



Folding

® the isomorphism between A:XxY—Z and A:X—=Y—=Z is called currying;
(generalized) currying of lookup tables is array folding

® we denote folding the n'th axis of A with A

An>[ coo ,‘n—]_, ‘n+1; cooe ][.]
= A[ oo ;‘n—l,.n;‘n+1; oo ]

e folding the n'th axis moves that axis into the value space; cells become vectors

e folding multiple axes simultaneously make cells into arbitrary arrays:

e example: fold the 1st and 3rd axes of a 3-array A, giving a vector of matrices:

At [e][e,e] = Ale,0,0]



Folding

row vectors of a matrix

Mm=1[12] ® M>>[ 3] is the third row vector of M
[3 4]
(5 6] ] ® M2 is a vector of row vectors of M
e cellwise:
M>[e][®] = M[e,e]

® cvaluate M [ 3]

M>[3]L1] = M[3,1]
M>[3]1[2] = M[3,2] =

I [
oy Ul

M>[3] = [5 6]



Folding

column vectors of a matrix

Mm=1[[1 2] ® M>[1] is the first column vector of M
[3 4] |
(5 6] ] ® M s a vector of column vectors of M
e cellwise:
M>[e][e] = M[e,e]

® cvaluate M [ 1]

M>[1][1] = M[1,1] =1
M-[1][2] = Mm[2,1] = 3
M>[1][3] = M[3,1] = 5

M>[1] = [1 3 5]



N-ary operations



Flementwise

® combine arrays w.r.t. any n-ary operation

® for fields: unary operations -0, 1/0

® for semirings:

o R, Z, N: n-ary plus, times, min, max

B n-ary and, or, xor, unary not

® e.g. cellwise definitions:

(A + B)[e] = A[e] xB[e]

(A A B)[e,eo] = A[e,e] A Ble,e]

(_'A)[‘r.r‘] = "A[‘r.r‘]



"Tensor product”

® tensor product of two vectors via broadcasting + elementwise

(UoV)[e,e] Ule 1% V[ e]
U>[e,e] *V[e,0]

(U»x V*)[e,0]

UeV = U * VP&



Matrix multiplication

® matrix multiplication M-N via broadcasting + elementwise + aggregation

e (M:N)[o,0] = ) M[o,@¢ ]* N[ eo,0]
= D)o M[@,0,0] *xN"[0,0,0]
= e (M *N")[0,0,0]
= sumy(M*> x N*)[e,®]

M- N

sumz(M3* * Nle)



Picking

® using an array of positions P to pick cells in another array A

® written A[P]

® value space of picking array P must be key space of target array A

P:K— (s1,s2, ...)
A : (s1,s2, ... ) D>V
ALP] : K — V

® cellwise definition: (A[P])[e,e,e, ... ] = A[P[e,0, 0, ... ]]

® this is just ordinary function composition of lookup tables!



Picking

® examples: picking from a vector A =

P

P

P

2

[3 1 2]
[[1] [2]]

® examples: picking from a matrix A =

P

P

P

(1,1)
[(1,1) (2,2) (2,1)]
[[ (2,1) ]I

[10 20 30]
ALP] = 20
A[P] = [30 10 20]
A[P] = [[10] [20]]

[[10 20] [30 40]]

ALP]
ALP]

ALP]

10
[10 40 30]
[[ 30 ]]



Critique



Key point: keys are tuples

® (Classic arrays = cells identified by tuples of parts
® Tuples are ordered lists

® |s this a good choice?



Why tuples?

Why are tuples a good choice?

® They are simple, familiar data structures
® Positionally-ordered arguments are the norm in programming
® Make machine implementation easy:

® Arrays must be laid out in consecutive positions in linear memory (RAM)

® This requires an ordering of axes to decide how to compile an abstract key like
(3,1,2) from shape (3,3,3) into an offset into memory:

offset = (3-1) * 9 + (1-1) » 3 + (2-1) = 19



Why not tuples?

Why are tuples not a good choice?

® compositions of arrays require matching corresponding axes from the arrays

® getting this matching right (e.g. color channel of images with color channel of
a tinting operation) may require fiddly transposition + broadcasting

® throws away semantic information (e.g. axis 3 = color channel), yielding endless
bugs and tedious documentation to keep track of axes

® similar situation to early days of programming:
® registers in a CPU are numbered, but humans like to use named variables
¢ the allocation of variables to registers constantly changes

® this is why we moved from assembly code to high level programming
langauges



Rainbow arrays



Records

® solution: replace key tuples with key records
® tuple: (5, 3, 2)
® record: (a=5 b=3 c=2)

® the tuple has components labeled by 1, 2, and 3

® the record has fields labeled by a, b, and ¢



Records

® relationship to axes:

® tuples: axis 1 associated with the 1st slot of every key tuple

® records:  axis a associated with the "a" field of every key record

® relationship to shapes:

® (3,2,4) { (1,7,k) | 1<i<3, 1<js<2, 1sks4 }

® (a=3 b=2 c=4) = { (a=1 b=j c=k) | 1<1<3, 1<j<2, 1sks4 }



Records

Rainbow notation

® instead of writing (a=5 b=3 c=2) we color code the fields:

abc

® and then use these colors to distinguish fields:

(5 3 2)

® note there are no commas, as this is not a tuple (where order of components
matters), but a rainbow notation for a record (which has no order of fields)

® similarly, the shape of a matrix with 3 rows and 4 columns is

(3 4) = (4 3) = (row=3 column=4)



Records

Rainbow notation

® for array lookup, we replace A[1, j,k] with A[eee]

® notice again the lack of commas, since A[eee] = A[oee] = Aloee] =

® cell value A[eee ] is shorthand for function application A( (eee) )

AC (eee) )

® in colorful notation A[e,e,e] color is a visual aid; only order is meaningful

Aleoe ]

A( (r=e g=e b=e ) )

® in rainbow notation A[eee ] order is meaningless; only color is meaningful

® to denote the colors of an array (spectrum?), write A : (eeoe)



Records

® example: a color image of 4 pixels high by 6 pixels wide

p

» X

v
y

® in tuple formalism: image has shape (4,6,3) undery, x, c convention

® in record formalism: image has shape (y=4 x=6 c=3)



Records

® example: a color image of 4 pixels high by 6 pixels wide

sy

v

y

® in tuple formalism: highlighted sub-pixel has key (2,6,1)

® in record formalism: highlighted sub-pixel has shape (y=2 x=6 c=1)



Reorganizing the API

® how do rainbow arrays reformulate
our algebra?

® transposition is meaningless, since
axes do not have order

® axes can however be recolored, a
new operation

® aggregation is unchanged
¢ folding is unchanged

® clementwise operation automatically
broadcasts over missing colors

® broadcasting is hence unnecessary

® we eliminate one operation from our
API

® we also gain semantic clarity, since
the axes preserve their meaning
aCross compositions



Recoloring

® transposition reordered axes but preserved arity; recoloring is similar
® we have a matrix M : (ee) but we want a matrix M : (ee)
® apply a map o={ew~e} to "translate" keys of M to keys of M
® cellwise: M°[1 7] = M[1 7]
® conceptually, o : (e®) > (ee) renames a field of a key record:

® if underlying field names are r, g, b

o((r=1 b=j)) = (r=1 g=j)
® in rainbow notation:

o((1 j)) = (1 7)



Recoloring as picking

® this is a special case of picking

® c.o., if we wantto recolorM : (2 3) toM :(2 3), we can using picking matrix:

P=1[ [ (11) (12)(13) ]
[ (2 2) (2 3) (23) 11

® this has the property that P[1 j] = (i j) as needed, soM = M[P]

® this is also true of transposition: a transposition is a particular kind of picking in
which we look up the transposed keys in the original key

® we can also express broadcasting (and diagonal-taking) as a special case of
recoloring, if we allow the map o to be a more general relation than a function

(specifically, it must be the pre-image of a total function)



Flementwise

® rainbows: elementwise and broadcasting are combined

® rule: broadcast all arrays to have common set of colors, then apply operation
cellwise

® result has union of colors of inputs

® vields unique array op for each value op (by "lifting")



Flementwise

vector times vector

® shared color:

U :
V :
V :

D e N
O
SO N N

U %

(UxV)[e] = Ule] xV[e]

11 23] x[012] =102 6]



Flementwise

vector times scalar

® scalar has no colors, so no sharing!

S: ()
V:(e)
SxV: (e)
(S*xV)[e] = S[]*V[e]

5 % [12 3] =[5 10 15]



Flementwise

vector times vector

® no shared color:

UxV : (ee)

(UxV)[ee] = Ule] xV[e]

(1 23] *[012] =[[000] [123] [246]]



Flementwise

matrix times matrix

® 2 shared colors:

M: (ee)

N: (ee0)
MxN: (e0)
(MxN)[ee] = M[ee] *x N[eoe]
112 = [lo1] = [[0 2]

13 4] (1 0]] 13 0]



Flementwise

matrix times matrix

® 1 shared colors:

M: (ee)
N: (ee0)
MxN: (eoe)

(MxN)[ooe] M[ee] *x N[ee]

(112 *[le1] = [[1x[e 1] 2x[10]] = [[l0 1] [2 0]]
13 4] (1 0]] 13%[0 1] 4%[1 0]]] ([0 3] [4 0]]]



Flementwise

matrix times matrix

® O shared colors:

M: (ee)
N: (ee0)
MxN: (ecee)

(MxN)[oooeo] M[ee] *x N[ee]

[[12] *[[e1] =11 [[e 1] [10e]] [[02][20]] ]
13 4] (1 0]] L Lle 3] [30]] [[o4]llsa0]] | |



Flementwise

Example: matrix multiplication

e if M and N share one color, we can obtain matrix multiplication via:

M: (ee)
N: (ee0)
M:-N: (oe)

M-N = sum(M * N)
¢ if M and N share no colors, we obtain Kronecker product of matrices

e if they share both colors, we obtain Hadamard product



Flementwise

Example: tinting an image

® for color coding x, vy, c image array I : (eee)

® for a tinting factor T : (®) such T = [1.0, 1.0, 0.5] as which halves blue
channel, we can apply the tint simply as:

I T

® this is simpler and more straightforward than the classic picture, which requires
broadcasting to account for x and y axes



Other operations

® aggregation, folding, picking remain as before

® however, we color these operations rather than subscript them
® c.o. for F : (eee) we can "sum over green":

sum(F)[ee] = )y F[oeee] = F[ele] + Fl[e2e] +



Takeaways



Advantages

® rainbow array algebra keeps semantic meaning (e.g. color channel, batch
number, time) attached to array axes, and abandons axis order

e this leads to fewer fundamental operations, greater clarity

® compositional properties of this alternative formulation are underexplored (e.g.
categorical foundation)

® the future of array programming: various deep learning practictioners (e.g. one of
the inventors of Torch) are pushing for labeled axes to become the standard



Future directions

® alternative diagrammatic formulation in terms of part / key dataflow

® e.g. taking the diagonal is copying of flow, broadcasting is deleting a flow

® flows compose
® categorical foundations, and connections to profunctors
® software library for Mathematica
® explain connections to hypergraph rewriting
® c.g. matrix multiplication measures combinatorics of graph composition

® adjacency arrays of hypergraphs are... higher-arity arrays, obviously
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