
Tali Beynon, April 2023

Rainbow arrays
Hypermatrix workshop

Overview

Introduction

Basic theory of classic arrays

Array algebra

Critique of classic arrays

Rainbow arrays

Introduction

• manipulations of higher-arity arrays ("array programming") is now an extremely
common and practical concern

• used in:

• data science, data visualization

• data warehousing

• machine learning, deep learning

• main players:

• data: numpy, scipy, R, pandas

• DL: torch, tensorflow, jax

Array programming

Tensors vs arrays
In physics

• tensors are objects that vary over space and time

• tensors transform in particular ways under spacetime symmetries

• tensors are identified with multilinear maps between vector spaces

• tensors (=maps) have "input" (contravariant) and "output" (covariant) indices

• a (p,q) tensor has p "input" and q "output" indices

• inputs can be switched with outputs (= presence of a metric)

• choosing a basis for underlying vector spaces establishes unique representations
as vectors, matrices, etc.

• tensors can be contracted, eliminating indices: linear operations

Tensors vs arrays
In computing

• tensors are arrays

• tensors do not represent maps between vector spaces

• tensors can be broadcasted, aggregated, and sliced

• aggregations are typically non-linear

• tensors indices reflect fundamentally different conceptual quantities:

• color channel vs pixel position

• batch number vs feature dimension

• these cannot be transformed into one another (= lack of a metric)

• we don't care about the physics meaning of tensors

• for brevity I'll use arrays rather than hypermatrices

• English definition: collection of objects ordered in a regular way

Tensors vs arrays

Basic theory

Basic theory
Scalars, vectors, matrices

• arrays have a "key space" and a "value space"

• three prototypical examples:

• scalars (arity 0) S = 9

• vectors (arity 1) V = [1 2 3]

• matrices (arity 2) M = [[1 2 3] 
	 	 	 [4 5 6]] 

Basic theory
Notation

• we use the convention of nested lists to write arrays with multiple axes

• no axes S = 9

• 1 axis V = [1 2 3]

• 2 axes M = [[1 2 3] 
	 	 [4 5 6]]

• more deeply nested lists correspond to higher-numbered axes

• we can use colors to make this correspondence clearer:

M = [[1 2 3] axis 2 
 [4 5 6]] axis 1

Basic theory
Example: color images

• images are very common data structures

• these have 3 axes: x,y,c

• x is the x-position of a pixel ∈ 1..W

• y is the y-position of a pixel ∈ 1..H

• c is the color channel ∈ {red, green,
blue} or conventionally {1,2,3}

• value is the intensity ∈ [0, 1] ⊂ ℝ

• but in ordinary arrays, axes are ordered,
not named...

Basic theory
Example: color images

• but with classical arrays, axes are ordered, not named...

• these axes are ordered in two common ways:

• y,x,c

• c,y,x

• semantically, a distinction without a difference, but required to know for
(classical) array programming

Basic theory
Array terminology

1 0 1 5

1 3 0 0

0 0 2 0

1

2

3

1 2 3 4

axis 1

axis 2

array A

(1,4)

part

key

A[1,4]

cell

= 5

value

Basic theory
Array terminology

array collection of cells

cell
slot in an array; 
labeled by key;

filled with a value

key
position of a cell in an array; 

a tuple of parts

axis key tuple position

1 0 1 5

1 3 0 0

0 0 2 0

1

2

3

1 2 3 4

axis 1 axis 2

array A

(1,4)

part 
(axis 2)

key

A[1,4]

cell

= 5

value

Basic theory
Simplifying assumption

• part spaces are usually sets of the form 1..n = {1,2,...,n}

• key space is the space of tuples formed from these part spaces

• for n-array, key space can be denoted by a shape written ⟨s1,s2,...,sn⟩

• a matrix with 3 rows and 2 columns has shape ⟨3,2⟩

⟨3,2⟩ = { (1,1), (1,2), (2,1), (2,2), (3,1), (3,2) }

• this is the Cartesian product of part spaces 1..3 and 1..2

• a scalar has a shape ⟨⟩ ; key space is singleton set ⟨⟩ = {()}

• abstracting, we can consider general part spaces that aren't consecutive natural
numbers -- the total order on ℕ is usually not used or needed

Basic theory
Arrays as functions

• we can see an array A as a function from its key space to its value space

• arrays are just lookup tables, to use computer science terminology

• array algebra is the algebra that manipulates lookup tables

• an n-array is just a function of n variables

• or equivalently: a unary function with a single argument that is an n-tuple

• cell value A[1,2,3] is shorthand for function application A((1,2,3))

• later: rainbow arrays replace this tuple with a record

Array examples
Examples

name arity example shape entries

scalar 0 9 () () → 9

vector 1 [9 1 5] (3) (3) → 5

matrix 2
[[9 1 5]

 [3 2 6]]
(2,3)

(1,1) → 9 
(2,3) → 6

3-array 3
[[[0 1] [0 10]]

 [[2 3] [20 30]]

 [[4 5] [40 50]]]
(3,2,2)

(1,1,1) → 0 
(2,1,1) → 2

(3,2,2) → 50

4-array 4
[[[[1 2]]]

 [[[3 4]]]

 [[[5 6]]]]
(3,1,1,2)

(1,1,1,1) → 1 
(2,1,1,1) → 3

(3,1,1,2) → 6

Array algebra

• define some array ("output array") that depends on other arrays ("input arrays")

• to do this, work backwards: derive output cell from input cells

• examples:

• M[i,j] ≡ B[i] + C[j]

• V[i] ≡ V[i] * M[i]

• M[i,j] ≡ V[i] - V[j]

• M[i,j] ≡ S[]

• cellwise definitions are the most flexible kind of definition

• but can be decomposed into other, primitive definitions

Cellwise definitions

Colorful notation
• cellwise definitions: instead of using symbols to indicate parts:

P[i,j] ≡ A[i] + B[j]

• often we will use colors to indicate parts:

P[●,●] ≡ A[●] + B[●]

• at a glance, we can easily see matching parts...

• note: this is just a visual aid, it's not semantically meaningful

• this also gestures to the rainbow at the end of the talk

• unary operations: have a single input array

• three common unary operations, corresponding to how they modify # of axes

• transposition: output has = # of axes as input

• broadcasting: output has > # axes than input

• aggregation: output has < # axes than input

• folding: output has < # axes than input

• n-ary operations: have multiple input arrays

• elementwise: output has = # axes as every input

• picking: output has = # axes as first input

Operations

Unary operations

• "smear" lower-arity arrays across additional novel axes

• "repeats" cells across the novel axes

• example:

• broadcast a scalar (0-array) into a vector (1-array):

• broadcast a vector into a matrix: XXX missing image

• cellwise:

• scalar ➝ vector: V[i] ≡ S[]

• vector ➝ matrix: M[r,c] ≡ V[r]	 M[r,c] ≡ V[c]

• scalar ➝ matrix: M[r,c] ≡ S[]

Broadcasting

• broadcasting notated by Aa➜s

• a is the position in axis list where an axis of size s will be inserted

• A1➜s indicates adding axis at beginning

• An➜s indicates adding axis just before position 𝑛

• example, vector U = [1 2 3]

 U2➜3 = 	[[1 1 1] U1➜3 = 	 [[1 2 3] 
	 [2 2 2] 	 [1 2 3] 
	 [3 3 3]]	 	 [1 2 3]

• example: scalar S = 9

S1➜2,2➜3 	= 91➜2,2➜3 = [9 9]2➜3 
 	= [[9 9 9] [9 9 9]]

Broadcasting

• from the function perspective, An➜ takes one more argument than A, but drops it
and calls A

 An➜[..., ●n-1, ●n, ●n+1,...] 
≡ A[..., ●n-1, ●n+1,...]

Broadcasting

Transposition
"Axis yoga"

• transposition re-arranges the order of axes:

• transpose a matrix: Mᵀ[i,j] ≡ M[j,i]

• change image convention: I'[x,y,c] ≡ I[c,x,y]

• notate this as a superscript describing the axis permutation A𝜎:

• A𝜎[●1,●2,...,●n] = A[●𝜎(1),●𝜎(2),...,●𝜎(n)]

• Mᵀ = M(1,2)

• I' = I(1,2,3)

• aggegration w.r.t. any commutative monoid

• for fields: sum, mean

• for semirings:

• ℝ, ℤ, ℕ: plus, times, min, max

• 𝔹: and ∧, or ∨, xor ⊻

• subscript picks the axis to aggregate (= remove):

• sum2(F)[●,●] ≡ ∑● F[●,●,●] = F[●,1,●] + F[●,2,●] + ...

• min1(G)[●] ≡ min● G[●,●] = min(G[1,●], G[2,●], ...)

• (∧1F)[] ≡ and● F[●] = F[1] ∧ F[2] ∧ ...

Aggregation

• see an array A as a map A:𝕂->𝕍 from key space 𝕂 to value space 𝕍

• e.g. a real M of shape ⟨3,2⟩ is a map A:⟨3,2⟩->

• ⟨3,2⟩ stands for the set of tuples { (i,j) | i ∈ 1..3, j ∈ 1..2 }

• M = [[1 2] [3 4] [5 6]] is a vector-of-vectors in two ways:

• 3-vector of row vectors with cells [1 2], [3 4], [5 6]

• 2-vector of column vectors with cells: [1 3 5], [2 4 6]

• this corresponds to folding the map A:⟨3,2⟩-> into:

• a 3-vector whose cells are 2-vectors A:⟨3⟩->⟨2⟩->

• a 2-vector whose cells are 3-vectors A:⟨2⟩->⟨3⟩->

ℝ

ℝ

ℝ

ℝ

Folding

• the isomorphism between A:X⨉Y->Z and A:X->Y->Z is called currying;
(generalized) currying of lookup tables is array folding

• we denote folding the n'th axis of A with An≻

 An≻[...,●n-1, ●n+1,...][●] 
≡ A[...,●n-1,●n,●n+1,...]

• folding the n'th axis moves that axis into the value space; cells become vectors

• folding multiple axes simultaneously make cells into arbitrary arrays:

• example: fold the 1st and 3rd axes of a 3-array A, giving a vector of matrices:

A1,3≻[●][●,●] ≡ A[●,●,●]

Folding

Folding
row vectors of a matrix

M = [[1 2] 
 [3 4] 
 [5 6]]

• cellwise:

M2≻[●][●] ≡ M[●,●]

• evaluate M2≻[3]

M2≻[3][1] = M[3,1] = 5 
M2≻[3][2] = M[3,2] = 6	  
 
M2≻[3] = [5 6]

• M2≻[3] is the third row vector of M

• M2≻ is a vector of row vectors of M

Folding
column vectors of a matrix

M = [[1 2] 
 [3 4] 
 [5 6]]

• cellwise:

M1≻[●][●] ≡ M[●,●]

• evaluate M1≻[1]

M1≻[1][1] = M[1,1] = 1 
M1≻[1][2] = M[2,1] = 3	  
M1≻[1][3] = M[3,1] = 5 
 
M1≻[1] = [1 3 5]

• M1≻[1] is the first column vector of M

• M1≻ is a vector of column vectors of M

N-ary operations

• combine arrays w.r.t. any n-ary operation

• for fields: unary operations -□, 1/□

• for semirings:

• ℝ, ℤ, ℕ: n-ary plus, times, min, max

• 𝔹: n-ary and, or, xor, unary not

• e.g. cellwise definitions:

• (A + B)[●] ≡ A[●] * B[●]

• (A ∧ B)[●,●] ≡ A[●,●] ∧ B[●,●]

• (¬A)[●,●,●] ≡ ¬A[●,●,●]

Elementwise

• tensor product of two vectors via broadcasting + elementwise

(U ⊗ V)[●,●] ≡ U[●] * V[●]  
 = U2➜[●,●] * V1➜[●,●] 
 = (U2➜ * V1➜)[●,●] 
 ∴ 
 U ⊗ V = U2➜ * V1➜

"Tensor product"

• matrix multiplication M⋅N via broadcasting + elementwise + aggregation

• (M⋅N)[●,●]	= ∑● M[●,●] * N[●,●] 
	 = ∑● M3➜[●,●,●] * N1➜[●,●,●] 
	 = ∑● (M3➜ * N1➜)[●,●,●] 
	 = sum2(M3➜ * N1➜)[●,●] 
	 ∴ 
 M⋅N	 = sum2(M3➜ * N1➜)

Matrix multiplication

• using an array of positions P to pick cells in another array A

• written A[P]

• value space of picking array P must be key space of target array A

 P : 𝕂 -> ⟨s1,s2,...⟩ 
 A : ⟨s1,s2,...⟩ -> 𝕍 
A[P] : 𝕂 -> 𝕍

• cellwise definition: (A[P])[●,●,●,...] = A[P[●,●,●,...]]

• this is just ordinary function composition of lookup tables!

Picking

• examples: picking from a vector A = [10 20 30]

P = 2	 A[P] = 20

P = [3 1 2]	 A[P] = [30 10 20]

P = [[1] [2]]	 A[P] = [[10] [20]] 

• examples: picking from a matrix A = [[10 20] [30 40]]

P = (1,1)	 A[P] = 10

P = [(1,1) (2,2) (2,1)]	 A[P] = [10 40 30]

P = [[(2,1)]]	 A[P] = [[30]]

Picking

Critique

Key point: keys are tuples

• Classic arrays = cells identified by tuples of parts

• Tuples are ordered lists

• Is this a good choice?

Why tuples?
Why are tuples a good choice?

• They are simple, familiar data structures

• Positionally-ordered arguments are the norm in programming

• Make machine implementation easy:

• Arrays must be laid out in consecutive positions in linear memory (RAM)

• This requires an ordering of axes to decide how to compile an abstract key like
(3,1,2) from shape (3,3,3) into an offset into memory:

offset = (3−1) * 9 + (1−1) * 3 + (2−1) = 19

Why not tuples?
Why are tuples not a good choice?

• compositions of arrays require matching corresponding axes from the arrays

• getting this matching right (e.g. color channel of images with color channel of
a tinting operation) may require fiddly transposition + broadcasting

• throws away semantic information (e.g. axis 3 = color channel), yielding endless
bugs and tedious documentation to keep track of axes

• similar situation to early days of programming:

• registers in a CPU are numbered, but humans like to use named variables

• the allocation of variables to registers constantly changes

• this is why we moved from assembly code to high level programming
langauges

Rainbow arrays

• solution: replace key tuples with key records

• tuple: (5, 3, 2)

• record: (a=5 b=3 c=2)

• the tuple has components labeled by 1, 2, and 3

• the record has fields labeled by a, b, and c

Records

• relationship to axes:

• tuples: axis 1 associated with the 1st slot of every key tuple

• records: axis a associated with the "a" field of every key record

• relationship to shapes:

• ⟨3,2,4⟩ 	 ≡ { (i,j,k) | 1≤i≤3, 1≤j≤2, 1≤k≤4 }

• ⟨a=3 b=2 c=4⟩	≡ { (a=i b=j c=k) | 1≤i≤3, 1≤j≤2, 1≤k≤4 }

Records

Records
Rainbow notation

• instead of writing (a=5 b=3 c=2) we color code the fields:

a b c

• and then use these colors to distinguish fields:

(5 3 2)

• note there are no commas, as this is not a tuple (where order of components
matters), but a rainbow notation for a record (which has no order of fields)

• similarly, the shape of a matrix with 3 rows and 4 columns is

⟨3 4⟩ ≡ ⟨4 3⟩ ≡ ⟨row=3 column=4⟩

Records
Rainbow notation

• for array lookup, we replace A[i,j,k] with A[●●●]

• notice again the lack of commas, since A[●●●] ≡ A[●●●] ≡ A[●●●] ≡ ...

• cell value A[●●●] is shorthand for function application A((●●●))

A[●●●] ≡ A((●●●)) ≡ A((r=● g=● b=●))

• in colorful notation A[●,●,●] color is a visual aid; only order is meaningful

• in rainbow notation A[●●●] order is meaningless; only color is meaningful

• to denote the colors of an array (spectrum?), write A : ⟨●●●⟩

• example: a color image of 4 pixels high by 6 pixels wide

• in tuple formalism: image has shape ⟨4,6,3⟩ under y, x, c convention

• in record formalism: image has shape ⟨y=4 x=6 c=3⟩

Records

• example: a color image of 4 pixels high by 6 pixels wide

• in tuple formalism: highlighted sub-pixel has key (2,6,1)

• in record formalism: highlighted sub-pixel has shape ⟨y=2 x=6 c=1⟩

Records

• how do rainbow arrays reformulate
our algebra?

• transposition is meaningless, since
axes do not have order

• axes can however be recolored, a
new operation

• aggregation is unchanged

• folding is unchanged

• elementwise operation automatically
broadcasts over missing colors

• broadcasting is hence unnecessary

• we eliminate one operation from our
API

• we also gain semantic clarity, since
the axes preserve their meaning
across compositions

Reorganizing the API

• transposition reordered axes but preserved arity; recoloring is similar

• we have a matrix M :⟨●●⟩ but we want a matrix M̂ :⟨●●⟩

• apply a map 𝜎={●↦●} to "translate" keys of M̂ to keys of M

• cellwise: M𝜎[i j] ≡ M[i j]

• conceptually, 𝜎 :⟨●●⟩->⟨●●⟩ renames a field of a key record:

• if underlying field names are r, g, b

𝜎((r=i b=j)) = (r=i g=j)

• in rainbow notation:

𝜎((i j)) = (i j)

Recoloring

• this is a special case of picking

• e.g., if we want to recolor M :⟨2 3⟩ to M̂ :⟨2 3⟩, we can using picking matrix:

P = [[(1 1) (1 2) (1 3)] 
 [(2 2) (2 3) (2 3)]]

• this has the property that P[i j] = (i j) as needed, so M̂ = M[P]

• this is also true of transposition: a transposition is a particular kind of picking in
which we look up the transposed keys in the original key

• we can also express broadcasting (and diagonal-taking) as a special case of
recoloring, if we allow the map 𝜎 to be a more general relation than a function
(specifically, it must be the pre-image of a total function)

Recoloring as picking

• rainbows: elementwise and broadcasting are combined

• rule: broadcast all arrays to have common set of colors, then apply operation
cellwise

• result has union of colors of inputs

• yields unique array op for each value op (by "lifting")

Elementwise

Elementwise
vector times vector

• shared color:

 U : ⟨●⟩ 
 V : ⟨●⟩ 
U * V : ⟨●⟩	  
 
(U * V)[●] ≡ U[●] * V[●] 
 
[1 2 3] * [0 1 2] = [0 2 6]

Elementwise
vector times scalar

• scalar has no colors, so no sharing!

 S : ⟨⟩ 
 V : ⟨●⟩	  
S * V : ⟨●⟩	  
 
(S * V)[●] ≡ S[] * V[●] 
 
5 * [1 2 3] = [5 10 15]

Elementwise
vector times vector

• no shared color:

 U : ⟨●⟩ 
 V : ⟨●⟩	  
U * V : ⟨●●⟩	  
 
(U * V)[●●] ≡ U[●] * V[●] 
 
[1 2 3] * [0 1 2] = [[0 0 0] [1 2 3] [2 4 6]]

Elementwise
matrix times matrix

• 2 shared colors:

 M : ⟨●●⟩	  
 N : ⟨●●⟩	  
M * N : ⟨●●⟩	  
 
(M * N)[●●] ≡ M[●●] * N[●●] 
 
[[1 2] * [[0 1] = [[0 2] 
 [3 4]] [1 0]] [3 0]]

Elementwise
matrix times matrix

• 1 shared colors:

 M : ⟨●●⟩	  
 N : ⟨●●⟩	  
M * N : ⟨●●●⟩	  
 
(M * N)[●●●] ≡ M[●●] * N[●●] 
 
[[1 2] * [[0 1] = [[1*[0 1] 2*[1 0]] = [[[0 1] [2 0]] 
 [3 4]] [1 0]] [3*[0 1] 4*[1 0]]] [[0 3] [4 0]]]

Elementwise
matrix times matrix

• 0 shared colors:

 M : ⟨●●⟩	  
 N : ⟨●●⟩	  
M * N : ⟨●●●●⟩	 
 
(M * N)[●●●●] ≡ M[●●] * N[●●] 
 
[[1 2] * [[0 1] = [[[[0 1] [1 0]] [[0 2] [2 0]]]  
 [3 4]] [1 0]] [[[0 3] [3 0]] [[0 4] [4 0]]]]

Elementwise
Example: matrix multiplication

• if M and N share one color, we can obtain matrix multiplication via:

 M : ⟨●●⟩ 
 N : ⟨●●⟩ 
M⋅N : ⟨●●⟩ 
 
M⋅N ≡ sum(M * N)

• if M and N share no colors, we obtain Kronecker product of matrices

• if they share both colors, we obtain Hadamard product

Elementwise
Example: tinting an image

• for color coding x, y, c image array I :⟨●●●⟩

• for a tinting factor T :⟨●⟩ such T = [1.0, 1.0, 0.5] as which halves blue
channel, we can apply the tint simply as:

I * T

• this is simpler and more straightforward than the classic picture, which requires
broadcasting to account for x and y axes

• aggregation, folding, picking remain as before

• however, we color these operations rather than subscript them

• e.g. for F :⟨●●●⟩ we can "sum over green":

sum(F)[●●] ≡ ∑● F[●●●] = F[●1●] + F[●2●] + ...

Other operations

Takeaways

Advantages

• rainbow array algebra keeps semantic meaning (e.g. color channel, batch
number, time) attached to array axes, and abandons axis order

• this leads to fewer fundamental operations, greater clarity

• compositional properties of this alternative formulation are underexplored (e.g.
categorical foundation)

• the future of array programming: various deep learning practictioners (e.g. one of
the inventors of Torch) are pushing for labeled axes to become the standard

Future directions

• alternative diagrammatic formulation in terms of part / key dataflow

• e.g. taking the diagonal is copying of flow, broadcasting is deleting a flow

• flows compose

• categorical foundations, and connections to profunctors

• software library for Mathematica

• explain connections to hypergraph rewriting

• e.g. matrix multiplication measures combinatorics of graph composition

• adjacency arrays of hypergraphs are... higher-arity arrays, obviously

• Rush: "Tensors considered harmful"

• Maclaurin, Paszke et al: Dex project

• Chiang, Rush, Barak: "Named Tensor Notation"

• Hoyer et al: XArray project

• Zapata-Carratala, Arsiwalla, Beynon: "Heaps of Fish"

References

https://nlp.seas.harvard.edu/NamedTensor
https://github.com/google-research/dex-lang
https://arxiv.org/abs/2102.13196v3
https://github.com/pydata/xarray
https://arxiv.org/abs/2205.05456

