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Introduction



• manipulations of higher-arity arrays ("array programming") is now an extremely 
common and practical concern 

• used in: 

• data science, data visualization 

• data warehousing 

• machine learning, deep learning 

• main players: 

• data: numpy, scipy, R, pandas 

• DL: torch, tensorflow, jax

Array programming



Tensors vs arrays
In physics

• tensors are objects that vary over space and time 

• tensors transform in particular ways under spacetime symmetries 

• tensors are identified with multilinear maps between vector spaces 

• tensors (=maps) have "input" (contravariant) and "output" (covariant) indices 

• a (p,q) tensor has p "input" and q "output" indices 

• inputs can be switched with outputs (= presence of a metric)  

• choosing a basis for underlying vector spaces establishes unique representations 
as vectors, matrices, etc. 

• tensors can be contracted, eliminating indices: linear operations



Tensors vs arrays
In computing

• tensors are arrays 

• tensors do not represent maps between vector spaces 

• tensors can be broadcasted, aggregated, and sliced 

• aggregations are typically non-linear  

• tensors indices reflect fundamentally different conceptual quantities: 

• color channel vs pixel position 

• batch number vs feature dimension 

• these cannot be transformed into one another (= lack of a metric)



• we don't care about the physics meaning of tensors 

• for brevity I'll use arrays rather than hypermatrices 

• English definition: collection of objects ordered in a regular way

Tensors vs arrays



Basic theory



Basic theory
Scalars, vectors, matrices

• arrays have a "key space" and a "value space" 

• three prototypical examples: 

• scalars (arity 0) S = 9 

• vectors (arity 1) V = [1 2 3] 

• matrices (arity 2) M = [ [1 2 3] 
         [4 5 6] ] 
   



Basic theory
Notation

• we use the convention of nested lists to write arrays with multiple axes 

• no axes S =      9 

• 1 axis V =   [1 2 3] 

• 2 axes M = [ [1 2 3] 
        [4 5 6] ] 

• more deeply nested lists correspond to higher-numbered axes 

• we can use colors to make this correspondence clearer: 

M = [ [1 2 3]       axis 2 
      [4 5 6] ]     axis 1



Basic theory
Example: color images

• images are very common data structures 

• these have 3 axes: x,y,c 

•  x is the x-position of a pixel ∈ 1...W 

•  y is the y-position of a pixel ∈ 1...H 

•  c is the color channel ∈ {red, green, 
blue} or conventionally {1,2,3}  

• value is the intensity ∈ [0, 1] ⊂ ℝ   

• but in ordinary arrays, axes are ordered, 
not named...



Basic theory
Example: color images

• but with classical arrays, axes are ordered, not named... 

• these axes are ordered in two common ways: 

• y,x,c 

• c,y,x 

• semantically, a distinction without a difference, but required to know for 
(classical) array programming



Basic theory
Array terminology
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Basic theory
Array terminology

array collection of cells

cell
slot in an array; 
labeled by key; 

filled with a value

key
position of a cell in an array; 
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Basic theory
Simplifying assumption

• part spaces are usually sets of the form 1...n = {1,2,.....,n} 

• key space is the space of tuples formed from these part spaces 

• for n-array, key space can be denoted by a shape written ⟨s1,s2,.....,sn⟩ 

• a matrix with 3 rows and 2 columns has shape ⟨3,2⟩ 

⟨3,2⟩ = { (1,1), (1,2), (2,1), (2,2), (3,1), (3,2) } 

• this is the Cartesian product of part spaces 1...3 and 1...2 

• a scalar has a shape ⟨⟩ ; key space is singleton set ⟨⟩ = {()} 

• abstracting, we can consider general part spaces that aren't consecutive natural 
numbers -- the total order on ℕ is usually not used or needed



Basic theory
Arrays as functions

• we can see an array A as a function from its key space to its value space 

• arrays are just lookup tables, to use computer science terminology 

• array algebra is the algebra that manipulates lookup tables 

• an n-array is just a function of n variables 

• or equivalently: a unary function with a single argument that is an n-tuple 

• cell value A[1,2,3] is shorthand for function application A( (1,2,3) )  

• later: rainbow arrays replace this tuple with a record



Array examples
Examples

name arity example shape entries

scalar 0 9 () () → 9

vector 1 [ 9 1 5 ] (3) (3) → 5

matrix 2
[ [9 1 5] 

    [3 2 6] ]
(2,3)

(1,1) → 9 
(2,3) → 6

3-array 3
[ [ [0 1] [ 0 10] ] 
  [ [2 3] [20 30] ] 

    [ [4 5] [40 50] ] ]
(3,2,2)

(1,1,1) →  0 
(2,1,1) →  2 
(3,2,2) → 50

4-array 4
[ [[ [1 2] ]] 
  [[ [3 4] ]] 

    [[ [5 6] ]] ]
(3,1,1,2)

(1,1,1,1) →  1 
(2,1,1,1) →  3 
(3,1,1,2) →  6



Array algebra



• define some array ("output array") that depends on other arrays ("input arrays") 

• to do this, work backwards: derive output cell from input cells 

• examples: 

•  M[i,j] ≡ B[i] + C[j] 

•      V[i] ≡ V[i] * M[i] 

•  M[i,j] ≡ V[i] - V[j] 

•  M[i,j] ≡ S[] 

• cellwise definitions are the most flexible kind of definition 

• but can be decomposed into other, primitive definitions

Cellwise definitions 



Colorful notation
• cellwise definitions: instead of using symbols to indicate parts: 

P[i,j] ≡ A[i] + B[j] 

• often we will use colors to indicate parts:  

P[●,●] ≡ A[●] + B[●] 

• at a glance, we can easily see matching parts... 

• note: this is just a visual aid, it's not semantically meaningful 

• this also gestures to the rainbow at the end of the talk



• unary operations: have a single input array 

• three common unary operations, corresponding to how they modify # of axes 

• transposition:  output has = # of axes as input 

• broadcasting:  output has > # axes than input 

• aggregation:  output has < # axes than input 

• folding:  output has < # axes than input 

• n-ary operations: have multiple input arrays 

• elementwise:  output has = # axes as every input 

• picking:  output has = # axes as first input

Operations



Unary operations



• "smear" lower-arity arrays across additional novel axes 

• "repeats" cells across the novel axes 

• example:  

• broadcast a scalar (0-array) into a vector (1-array):  

• broadcast a vector into a matrix:  XXX missing image 

• cellwise: 

• scalar ➝ vector:    V[i] ≡ S[] 

• vector ➝ matrix: M[r,c] ≡ V[r] M[r,c] ≡ V[c] 

• scalar ➝ matrix: M[r,c] ≡ S[]

Broadcasting



• broadcasting notated by Aa➜s 

• a is the position in axis list where an axis of size s will be inserted 

• A1➜s indicates adding axis at beginning 

• An➜s indicates adding axis just before position 𝑛  

• example, vector U = [1 2 3] 

 U2➜3 =  [[1 1 1]   U1➜3 =  [[1 2 3] 
  [2 2 2]          [1 2 3] 
  [3 3 3]]    [1 2 3] 

• example: scalar S = 9 

S1➜2,2➜3  = 91➜2,2➜3 = [9 9]2➜3 
       = [[9 9 9] [9 9 9]]

Broadcasting



• from the function perspective, An➜ takes one more argument than A, but drops it 
and calls A 

   An➜[....., ●n-1, ●n, ●n+1,.....] 
≡   A[....., ●n-1,      ●n+1,.....]

Broadcasting



Transposition
"Axis yoga"

• transposition re-arranges the order of axes: 

• transpose a matrix:  Mᵀ[i,j] ≡ M[j,i] 

• change image convention:  I'[x,y,c] ≡ I[c,x,y] 

• notate this as a superscript describing the axis permutation A𝜎: 

•  A𝜎[●1,●2,.....,●n] = A[●𝜎(1),●𝜎(2),.....,●𝜎(n)] 

•  Mᵀ = M(1,2) 

•  I' = I(1,2,3)



• aggegration w.r.t. any commutative monoid 

• for fields: sum, mean 

• for semirings: 

• ℝ, ℤ, ℕ: plus, times, min, max 

• 𝔹: and ∧, or ∨, xor ⊻  

• subscript picks the axis to aggregate (= remove): 

• sum2(F)[●,●] ≡ ∑● F[●,●,●] = F[●,1,●] + F[●,2,●] + ..... 

• min1(G)[●] ≡ min● G[●,●] = min(G[1,●], G[2,●], .....) 

• (∧1F)[] ≡ and● F[●] = F[1] ∧ F[2] ∧ .....

Aggregation



• see an array A as a map A:𝕂->-𝕍 from key space 𝕂 to value space 𝕍 

• e.g. a real M of shape ⟨3,2⟩ is a map A:⟨3,2⟩->-  

•  ⟨3,2⟩ stands for the set of tuples { (i,j) | i ∈ 1...3, j ∈ 1...2 } 

• M = [ [1 2] [3 4] [5 6] ] is a vector-of-vectors in two ways: 

• 3-vector of row vectors with cells [1 2], [3 4], [5 6] 

• 2-vector of column vectors with cells: [1 3 5], [2 4 6] 

• this corresponds to folding the map A:⟨3,2⟩->-  into: 

• a 3-vector whose cells are 2-vectors A:⟨3⟩->-⟨2⟩->-  

• a 2-vector whose cells are 3-vectors A:⟨2⟩->-⟨3⟩->-  

ℝ

ℝ

ℝ

ℝ

Folding



• the isomorphism between A:X⨉Y->-Z and A:X->-Y->-Z is called currying; 
(generalized) currying of lookup tables is array folding 

• we denote folding the n'th axis of A with An≻  

   An≻[.....,●n-1,   ●n+1,.....][●] 
≡   A[.....,●n-1,●n,●n+1,.....] 

• folding the n'th axis moves that axis into the value space; cells become vectors 

• folding multiple axes simultaneously make cells into arbitrary arrays: 

• example: fold the 1st and 3rd axes of a 3-array A, giving a vector of matrices: 

A1,3≻[●][●,●] ≡ A[●,●,●]

Folding



Folding
row vectors of a matrix

M = [ [1 2] 
      [3 4] 
      [5 6] ] 

• cellwise: 

M2≻[●][●] ≡ M[●,●]  

• evaluate M2≻[3] 

M2≻[3][1] = M[3,1] = 5 
M2≻[3][2] = M[3,2] = 6  
 
M2≻[3] = [5 6] 

• M2≻[3] is the third row vector of M 

• M2≻ is a vector of row vectors of M



Folding
column vectors of a matrix

M = [ [1 2] 
      [3 4] 
      [5 6] ] 

• cellwise: 

M1≻[●][●] ≡ M[●,●]  

• evaluate M1≻[1] 

M1≻[1][1] = M[1,1] = 1 
M1≻[1][2] = M[2,1] = 3  
M1≻[1][3] = M[3,1] = 5 
 
M1≻[1] = [1 3 5] 

• M1≻[1] is the first column vector of M 

• M1≻ is a vector of column vectors of M



N-ary operations



• combine arrays w.r.t. any n-ary operation 

• for fields: unary operations -□, 1/□  

• for semirings: 

• ℝ, ℤ, ℕ:  n-ary plus, times, min, max 

• 𝔹:  n-ary and, or, xor, unary not 

• e.g. cellwise definitions: 

•  (A + B)[●] ≡ A[●] * B[●] 

•  (A ∧ B)[●,●] ≡ A[●,●] ∧ B[●,●] 

•  (¬A)[●,●,●] ≡ ¬A[●,●,●]

Elementwise 



• tensor product of two vectors via broadcasting + elementwise 

(U ⊗ V)[●,●] ≡  U[●  ] *   V[  ●]  
            = U2➜[●,●] * V1➜[●,●] 
            = (U2➜ *  V1➜)[●,●] 
            ∴ 
 U ⊗ V       = U2➜ *  V1➜

"Tensor product"



• matrix multiplication M⋅N via broadcasting + elementwise + aggregation 

• (M⋅N)[●,●] =  ∑●   M[●,●  ] *   N[  ●,●] 
 =  ∑●  M3➜[●,●,●] * N1➜[●,●,●] 
 =  ∑●  (M3➜ * N1➜)[●,●,●] 
 = sum2(M3➜ * N1➜)[●,●] 
 ∴ 
 M⋅N = sum2(M3➜ * N1➜)

Matrix multiplication



• using an array of positions P to pick cells in another array A 

• written A[P] 

• value space of picking array P must be key space of target array A 

   P : 𝕂 ->- ⟨s1,s2,.....⟩ 
   A :     ⟨s1,s2,.....⟩ ->- 𝕍 
A[P] : 𝕂              ->-                𝕍 

• cellwise definition: (A[P])[●,●,●,.....] = A[P[●,●,●,.....]] 

• this is just ordinary function composition of lookup tables!

Picking



• examples: picking from a vector A = [10 20 30] 

P = 2 A[P] = 20 

P = [3 1 2] A[P] = [30 10 20] 

P = [[1] [2]] A[P] = [[10] [20]] 

• examples: picking from a matrix A = [[10 20] [30 40]] 

P = (1,1) A[P] = 10 

P = [(1,1) (2,2) (2,1)] A[P] = [10 40 30] 

P = [[ (2,1) ]] A[P] = [[ 30 ]]

Picking



Critique



Key point: keys are tuples

• Classic arrays = cells identified by tuples of parts 

• Tuples are ordered lists 

• Is this a good choice?



Why tuples?
Why are tuples a good choice?

• They are simple, familiar data structures 

• Positionally-ordered arguments are the norm in programming 

• Make machine implementation easy: 

• Arrays must be laid out in consecutive positions in linear memory (RAM) 

• This requires an ordering of axes to decide how to compile an abstract key like 
(3,1,2) from shape (3,3,3) into an offset into memory: 

offset = (3−1) * 9 + (1−1) * 3 + (2−1) = 19



Why not tuples?
Why are tuples not a good choice?

• compositions of arrays require matching corresponding axes from the arrays 

• getting this matching right (e.g. color channel of images with color channel of 
a tinting operation) may require fiddly transposition + broadcasting 

• throws away semantic information (e.g. axis 3 = color channel), yielding endless 
bugs and tedious documentation to keep track of axes 

• similar situation to early days of programming:  

• registers in a CPU are numbered, but humans like to use named variables 

• the allocation of variables to registers constantly changes 

• this is why we moved from assembly code to high level programming 
langauges



Rainbow arrays



• solution: replace key tuples with key records 

• tuple:  (5, 3, 2) 

• record:  (a=5 b=3 c=2) 

• the tuple has components labeled by 1, 2, and 3 

• the record has fields labeled by a, b, and c

Records



• relationship to axes: 

• tuples: axis 1 associated with the 1st slot of every key tuple 

• records: axis a associated with the "a" field of every key record 

• relationship to shapes: 

• ⟨3,2,4⟩  ≡ { (i,j,k)       | 1≤i≤3, 1≤j≤2, 1≤k≤4 } 

• ⟨a=3 b=2 c=4⟩ ≡ { (a=i b=j c=k) | 1≤i≤3, 1≤j≤2, 1≤k≤4 }

Records



Records
Rainbow notation

• instead of writing (a=5 b=3 c=2) we color code the fields: 

a b c 

• and then use these colors to distinguish fields: 

(5 3 2) 

• note there are no commas, as this is not a tuple (where order of components 
matters), but a rainbow notation for a record (which has no order of fields) 

• similarly, the shape of a matrix with 3 rows and 4 columns is 

⟨3 4⟩ ≡ ⟨4 3⟩ ≡ ⟨row=3 column=4⟩ 



Records
Rainbow notation

• for array lookup, we replace A[i,j,k] with A[●●●] 

• notice again the lack of commas, since A[●●●] ≡ A[●●●] ≡ A[●●●] ≡ ..... 

• cell value A[●●●] is shorthand for function application A( (●●●) ) 

A[●●●] ≡ A( (●●●) ) ≡ A( (r=● g=● b=● ) ) 

• in colorful notation A[●,●,●] color is a visual aid; only order is meaningful 

• in rainbow notation A[●●●] order is meaningless; only color is meaningful 

• to denote the colors of an array (spectrum?), write A : ⟨●●●⟩



• example: a color image of 4 pixels high by 6 pixels wide 

 

• in tuple formalism: image has shape ⟨4,6,3⟩ under y, x, c convention 

• in record formalism: image has shape ⟨y=4 x=6 c=3⟩

Records



• example: a color image of 4 pixels high by 6 pixels wide 

 

• in tuple formalism:  highlighted sub-pixel has key (2,6,1) 

• in record formalism:  highlighted sub-pixel has shape ⟨y=2 x=6 c=1⟩

Records



• how do rainbow arrays reformulate 
our algebra? 

• transposition is meaningless, since 
axes do not have order 

• axes can however be recolored, a 
new operation 

• aggregation is unchanged 

• folding is unchanged 

• elementwise operation automatically 
broadcasts over missing colors 

• broadcasting is hence unnecessary 

• we eliminate one operation from our 
API 

• we also gain semantic clarity, since 
the axes preserve their meaning 
across compositions

Reorganizing the API



• transposition reordered axes but preserved arity; recoloring is similar 

• we have a matrix M :⟨●●⟩ but we want a matrix M̂  :⟨●●⟩ 

• apply a map 𝜎={●↦●} to "translate" keys of M̂  to keys of M  

• cellwise: M𝜎[i j] ≡ M[i j] 

• conceptually, 𝜎 :⟨●●⟩->-⟨●●⟩ renames a field of a key record: 

• if underlying field names are r, g, b 

𝜎((r=i b=j)) = (r=i g=j) 

• in rainbow notation: 

𝜎((i j)) = (i j)

Recoloring



• this is a special case of picking 

• e.g., if we want to recolor M :⟨2 3⟩ to M̂  :⟨2 3⟩, we can using picking matrix: 

P = [ [ (1 1) (1 2) (1 3) ] 
      [ (2 2) (2 3) (2 3) ] ] 

• this has the property that P[i j] = (i j) as needed, so M̂  = M[P] 

• this is also true of transposition: a transposition is a particular kind of picking in 
which we look up the transposed keys in the original key 

• we can also express broadcasting (and diagonal-taking) as a special case of 
recoloring, if we allow the map 𝜎 to be a more general relation than a function 
(specifically, it must be the pre-image of a total function)

Recoloring as picking



• rainbows: elementwise and broadcasting are combined 

• rule: broadcast all arrays to have common set of colors, then apply operation 
cellwise 

• result has union of colors of inputs 

• yields unique array op for each value op (by "lifting")

Elementwise



Elementwise
vector times vector

• shared color:  

   U : ⟨●⟩ 
   V : ⟨●⟩ 
U * V : ⟨●⟩  
 
(U * V)[●] ≡ U[●] * V[●] 
 
[1 2 3] * [0 1 2] = [0 2 6] 



Elementwise
vector times scalar

• scalar has no colors, so no sharing! 

   S : ⟨⟩ 
   V : ⟨●⟩  
S * V : ⟨●⟩  
 
(S * V)[●] ≡ S[] * V[●] 
 
5 * [1 2 3] = [5 10 15]



Elementwise
vector times vector

• no shared color:  

   U : ⟨●⟩ 
   V : ⟨●⟩  
U * V : ⟨●●⟩  
 
(U * V)[●●] ≡ U[●] * V[●] 
 
[1 2 3] * [0 1 2] = [[0 0 0] [1 2 3] [2 4 6]]



Elementwise
matrix times matrix

• 2 shared colors:  

   M : ⟨●●⟩  
   N : ⟨●●⟩  
M * N : ⟨●●⟩  
 
(M * N)[●●] ≡ M[●●] * N[●●] 
 
[[1 2]  * [[0 1]  =  [[0 2] 
 [3 4]]    [1 0]]     [3 0]]



Elementwise
matrix times matrix

• 1 shared colors:  

   M : ⟨●●⟩  
   N : ⟨●●⟩  
M * N : ⟨●●●⟩  
 
(M * N)[●●●] ≡ M[●●] * N[●●] 
 
[[1 2]  * [[0 1]  =  [[1*[0 1] 2*[1 0]]   =  [[[0 1] [2 0]] 
 [3 4]]    [1 0]]     [3*[0 1] 4*[1 0]]]      [[0 3] [4 0]]]



Elementwise
matrix times matrix

• 0 shared colors:  

   M : ⟨●●⟩  
   N : ⟨●●⟩  
M * N : ⟨●●●●⟩  
 
(M * N)[●●●●] ≡ M[●●] * N[●●] 
 
[[1 2]  * [[0 1]  = [ [ [[0 1]  [1 0]] [[0 2] [2 0]] ]   
 [3 4]]    [1 0]]     [ [[0 3]  [3 0]] [[0 4] [4 0]] ] ]



Elementwise
Example: matrix multiplication

• if M and N share one color, we can obtain matrix multiplication via: 

  M : ⟨●●⟩ 
  N : ⟨●●⟩ 
M⋅N : ⟨●●⟩ 
 
M⋅N ≡ sum(M * N) 

• if M and N share no colors, we obtain Kronecker product of matrices 

• if they share both colors, we obtain Hadamard product



Elementwise
Example: tinting an image

• for color coding x, y, c image array I :⟨●●●⟩ 

• for a tinting factor T :⟨●⟩ such T = [1.0, 1.0, 0.5] as which halves blue 
channel, we can apply the tint simply as: 

I * T 

• this is simpler and more straightforward than the classic picture, which requires 
broadcasting to account for x and y axes



• aggregation, folding, picking remain as before 

• however, we color these operations rather than subscript them 

• e.g. for F :⟨●●●⟩ we can "sum over green": 

sum(F)[●●] ≡ ∑● F[●●●] = F[●1●] + F[●2●] + .....

Other operations



Takeaways



Advantages

• rainbow array algebra keeps semantic meaning (e.g. color channel, batch 
number, time) attached to array axes, and abandons axis order 

• this leads to fewer fundamental operations, greater clarity 

• compositional properties of this alternative formulation are underexplored (e.g. 
categorical foundation) 

• the future of array programming: various deep learning practictioners (e.g. one of 
the inventors of Torch) are pushing for labeled axes to become the standard



Future directions

• alternative diagrammatic formulation in terms of part / key dataflow 

• e.g. taking the diagonal is copying of flow, broadcasting is deleting a flow 

• flows compose 

• categorical foundations, and connections to profunctors 

• software library for Mathematica 

• explain connections to hypergraph rewriting 

• e.g. matrix multiplication measures combinatorics of graph composition 

• adjacency arrays of hypergraphs are... higher-arity arrays, obviously



• Rush: "Tensors considered harmful" 

• Maclaurin, Paszke et al: Dex project 

• Chiang, Rush, Barak: "Named Tensor Notation" 

• Hoyer et al: XArray project 

• Zapata-Carratala, Arsiwalla, Beynon: "Heaps of Fish"
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