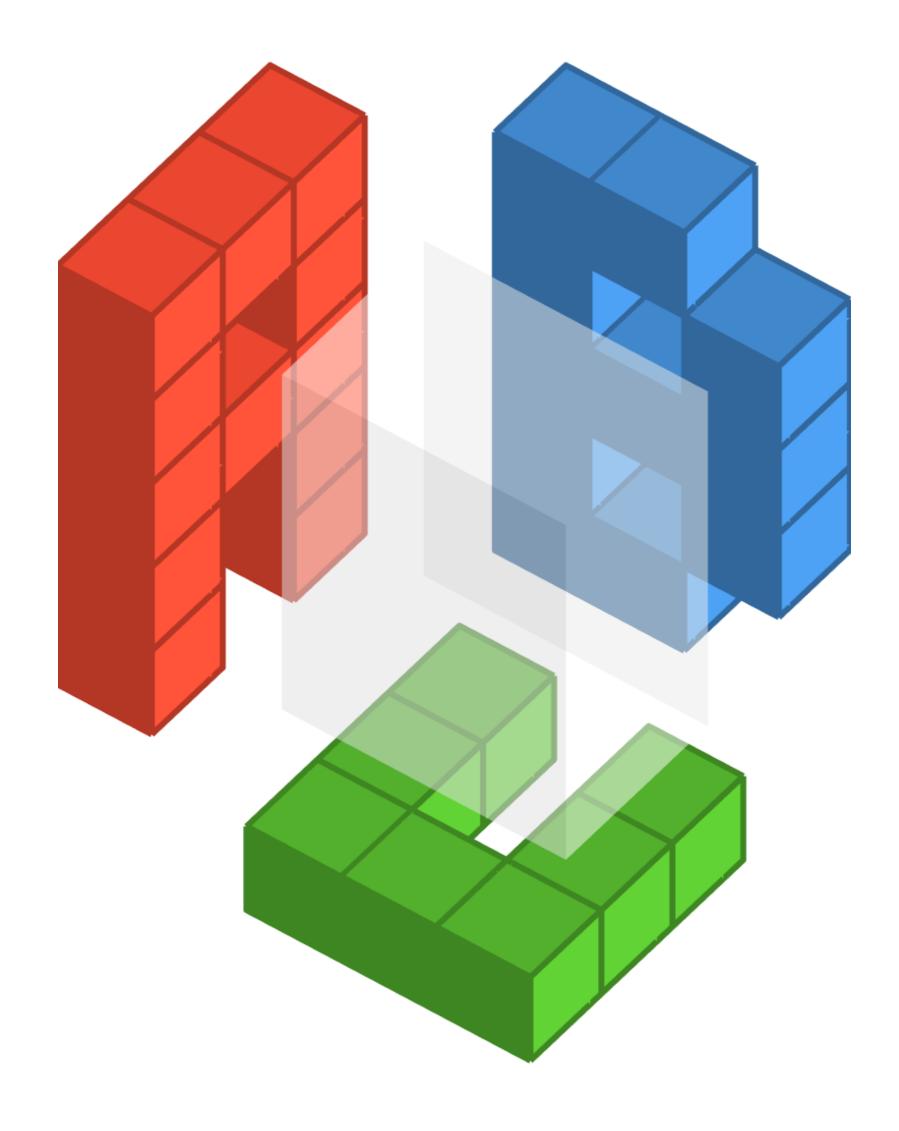
Rainbow arrays Hypermatrix workshop

Tali Beynon, April 2023



Overview

Introduction Basic theory of classic arrays Array algebra Critique of classic arrays Rainbow arrays

Introduction

Array programming

- manipulations of higher-arity arrays (common and practical concern
- used in:
 - data science, data visualization
 - data warehousing
 - machine learning, deep learning
- main players:
 - data: numpy, scipy, R, pandas
 - DL: torch, tensorflow, jax

• manipulations of higher-arity arrays ("array programming") is now an extremely

Tensors vs arrays In physics

- tensors are objects that vary over space and time
- tensors transform in particular ways under spacetime symmetries
- tensors are identified with multilinear maps between vector spaces
- tensors (=maps) have "input" (contravariant) and "output" (covariant) indices
 - a (*p*,*q*) tensor has *p* "input" and *q* "output" indices
 - inputs can be switched with outputs (= presence of a *metric*)
- choosing a basis for underlying vector spaces establishes unique representations as vectors, matrices, etc.
- tensors can be contracted, eliminating indices: linear operations

Tensors vs arrays In computing

- tensors are arrays
- tensors do not represent maps between vector spaces
- tensors can be broadcasted, aggregated, and sliced
 - aggregations are typically **non-linear**
- tensors indices reflect fundamentally different conceptual quantities:
 - color channel vs pixel position
 - batch number vs feature dimension
 - these cannot be transformed into one another (= lack of a *metric*)

Tensors vs arrays

- we don't care about the physics meaning of tensors
- for brevity I'll use **arrays** rather than **hypermatrices**
- English definition: collection of objects ordered in a regular way

Basic theory

Basic theory Scalars, vectors, matrices

- arrays have a "key space" and a "value space"
- three prototypical examples:
 - scalars (arity 0) S = 9
 - vectors (arity 1) V = [1 2 3]
 - matrices (arity 2) M = [[1 2 3]

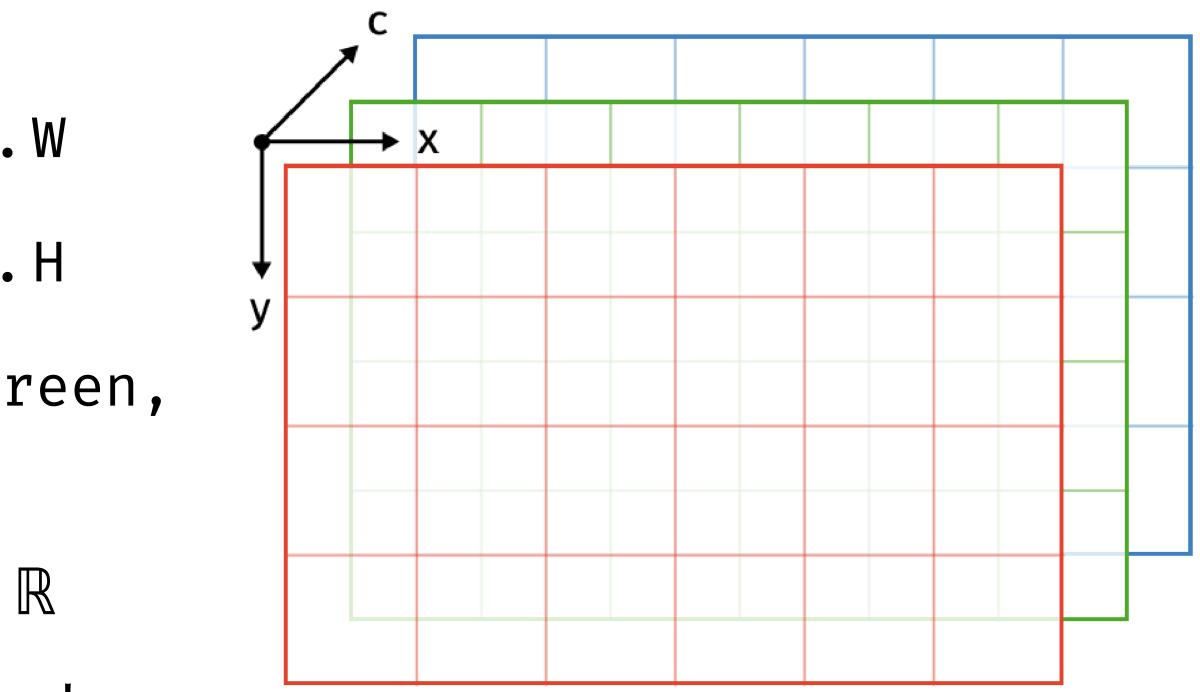
[4 5 6]]

Basic theory Notation

- we use the convention of **nested lists** to write arrays with multiple axes
 - 9 • no axes S =
 - 1 axis V = [1 2 3]
 - 2 axes M = [[1 2 3]][4 5 6]]
- more deeply nested lists correspond to higher-numbered axes
- we can use colors to make this correspondence clearer:
 - M = [[1 2 3]axis 2 [4 5 6]] axis 1

Basic theory Example: color images

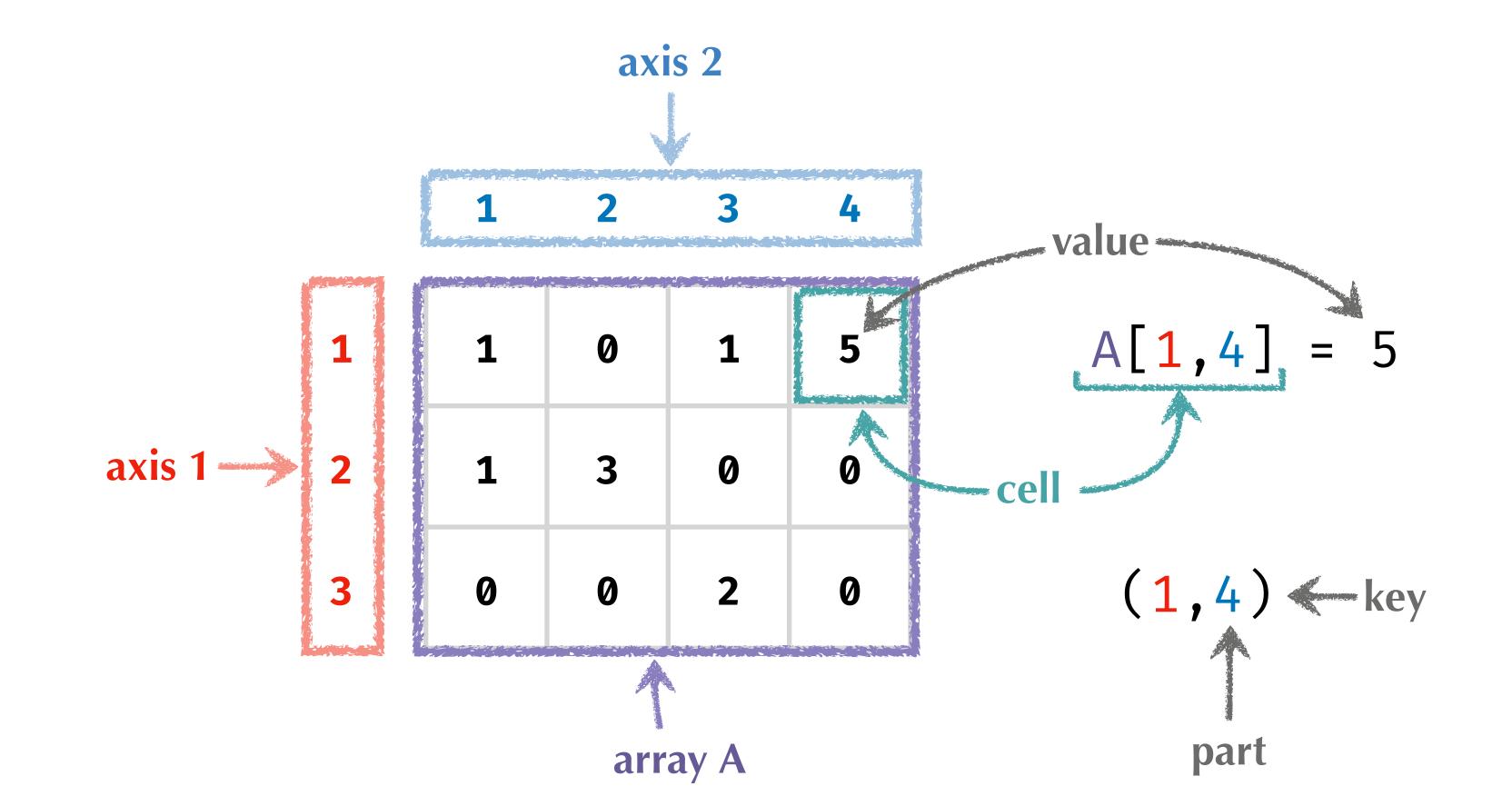
- images are very common data structures
- these have 3 axes: x, y, c
 - x is the x-position of a pixel \in 1...W
 - y is the y-position of a pixel \in 1...H
 - c is the color channel \in {red, green, blue} or conventionally {1,2,3}
 - value is the intensity $\in [0, 1] \subset \mathbb{R}$
- but in ordinary arrays, axes are ordered, not named...



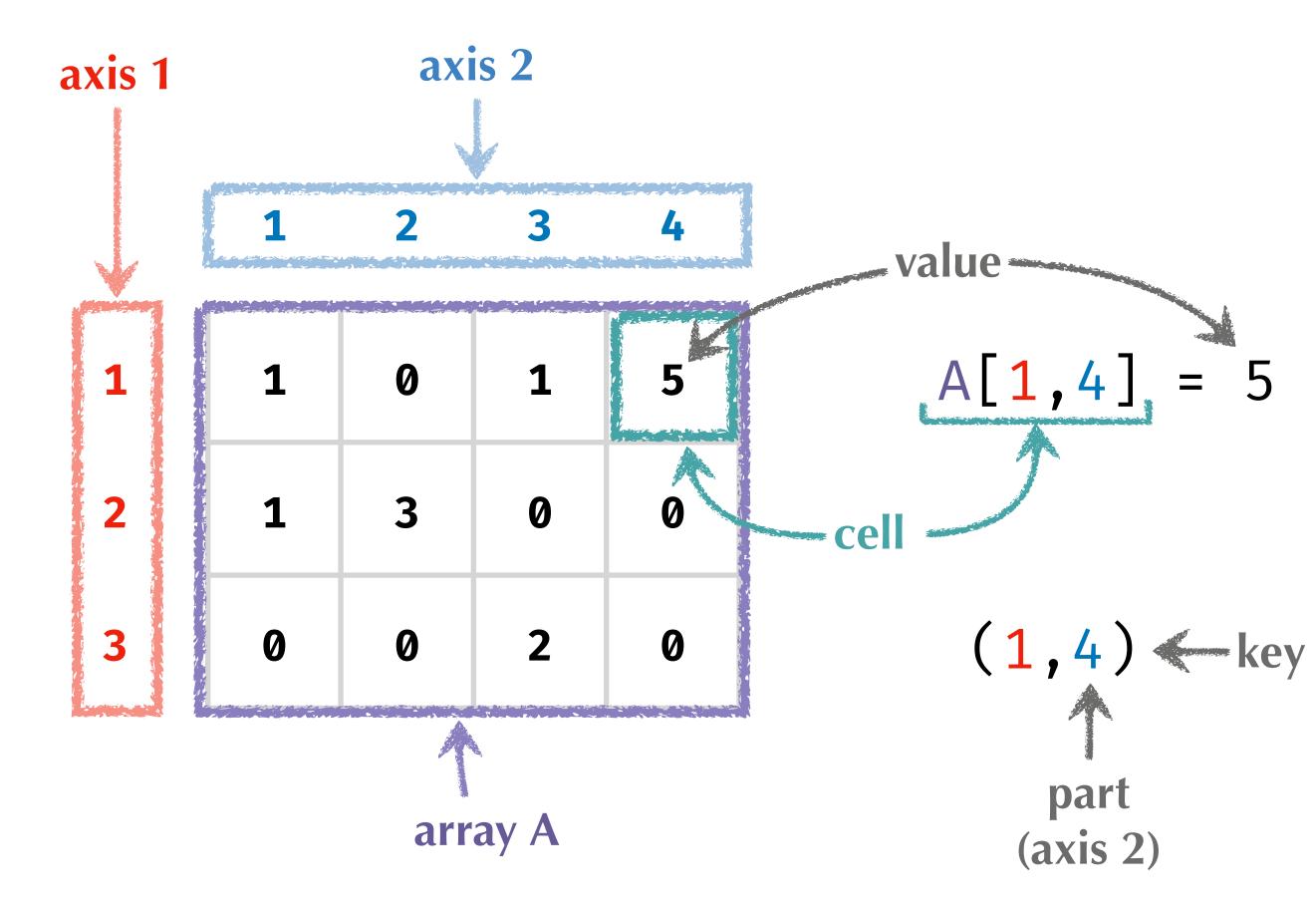
Basic theory Example: color images

- but with classical arrays, axes are ordered, not named...
- these axes are ordered in two common ways:
 - y, x, C
 - C, Y, X
- semantically, a distinction without a difference, but required to know for (classical) array programming

Basic theory Array terminology



Basic theory Array terminology



array	collection of cells
cell	slot in an array ; labeled by key ; filled with a value
key	position of a cell in an array; a tuple of parts
axis	key tuple position



Basic theory Simplifying assumption

- part spaces are usually sets of the form $1 \dots n = \{1, 2, \dots, n\}$
- key space is the space of tuples formed from these part spaces
 - for n-array, key space can be denoted by a **shape** written $(s_1, s_2, ..., s_n)$
 - a matrix with 3 rows and 2 columns has shape (3,2)

$$(3,2) = \{ (1,1), (1,2), \}$$

- this is the Cartesian product of part spaces 1... 3 and 1... 2
- a scalar has a shape (); key space is singleton set () = {()}
- abstracting, we can consider general part spaces that aren't consecutive natural numbers -- the total order on N is usually not used or needed

 $(2,1), (2,2), (3,1), (3,2) \}$

Basic theory Arrays as functions

- we can see an array A as a **function** from its key space to its value space
- arrays are just lookup tables, to use computer science terminology
- array algebra is the algebra that manipulates lookup tables
- an n-array is just a function of n variables
- or equivalently: a unary function with a single argument that is an n-tuple
- cell value A[1,2,3] is shorthand for function application A((1,2,3))
- later: rainbow arrays replace this tuple with a record

Array examples Examples

name	arity	example	shape	entries
scalar	0	9	()	() → 9
vector	1	[915]	(3)	(3) → 5
matrix	2	[[9 1 5] [3 2 6]]	(2,3)	$(1,1) \rightarrow 9$ $(2,3) \rightarrow 6$
3-array	3	$\begin{bmatrix} [0 1] [0 10]] \\ [2 3] [20 30]] \\ [4 5] [40 50]] \end{bmatrix}$	(3,2,2)	$(1,1,1) \rightarrow 0$ $(2,1,1) \rightarrow 2$ $(3,2,2) \rightarrow 50$
4-array	4	[[[[1 2]]] [[[3 4]]] [[[5 6]]]]	(3,1,1,2)	$(1,1,1,1) \rightarrow 1$ $(2,1,1,1) \rightarrow 3$ $(3,1,1,2) \rightarrow 6$

Array algebra

Cellwise definitions

- to do this, work backwards: derive output cell from input cells
- examples:
 - $M[i,j] \equiv B[i] + C[j]$
 - $V[i] \equiv V[i] * M[i]$
 - $M[i,j] \equiv V[i] V[j]$
 - $M[i,j] \equiv S[]$
- cellwise definitions are the most flexible kind of definition
 - but can be decomposed into other, primitive definitions

• define some array ("output array") that depends on other arrays ("input arrays")

Colorful notation

- cellwise definitions: instead of using symbols to indicate parts: $P[i,j] \equiv A[i] + B[j]$
- often we will use colors to indicate parts: $\mathsf{P}[\bullet,\bullet] \equiv \mathsf{A}[\bullet] + \mathsf{B}[\bullet]$
- at a glance, we can easily see matching parts...
- note: this is just a visual aid, it's not semantically meaningful
- this also gestures to the rainbow at the end of the talk

Operations

- unary operations: have a single input array
- three common unary operations, corresponding to how they modify # of axes
 - **transposition**: output has = # of axes as input
 - **broadcasting**: output has > # axes than input
 - **aggregation**: **output** has < # axes than input
 - **folding**: output has < # axes than input
- n-ary operations: have multiple input arrays
 - elementwise: output has = # axes as every input
 - **picking**: **output** has = # axes as first input

Unary operations

Broadcasting

- "smear" lower-arity arrays across additional novel axes
- "repeats" cells across the novel axes
- example:
 - broadcast a scalar (0-array) into a vector (1-array):
 - broadcast a vector into a matrix: XXX missing image
- cellwise:
 - scalar \rightarrow vector: $V[i] \equiv S[]$
 - vector \rightarrow matrix: $M[r,c] \equiv V[r]$ $M[r,c] \equiv V[c]$
 - scalar \rightarrow matrix: $M[r,c] \equiv S[]$

Broadcasting

- broadcasting notated by Aa→s
 - a is the position in axis list where an axis of size s will be inserted
 - $A^{1 \rightarrow s}$ indicates adding axis at beginning
 - $A^{n \rightarrow s}$ indicates adding axis just before position *n*

• example, vector
$$U = [1 \ 2 \ 3]$$

$$U^{2 \rightarrow 3} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} \qquad U^{1 \rightarrow 3} = \begin{bmatrix} \\ 2 & 2 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 3 & 3 & 3 \end{bmatrix}$$

• example: scalar S = 9

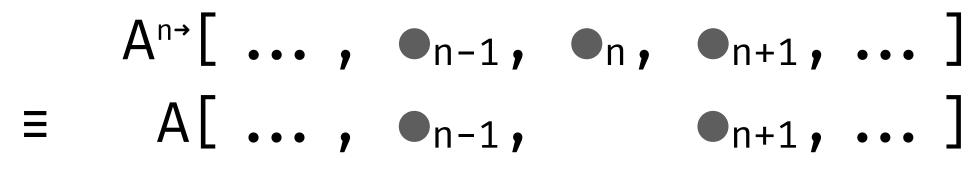
$$S^{1 \rightarrow 2, 2 \rightarrow 3} = 9^{1 \rightarrow 2, 2 \rightarrow 3} = [9 \ 9]^{2 \rightarrow 3}$$

= [[9 \ 9 \ 9] [9 \ 9 \ 9]

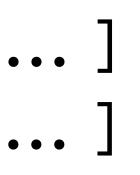
[1 2 3] [1 2 3][1 2 3]

Broadcasting

and calls A



• from the function perspective, A^{n→} takes one more argument than A, but drops it

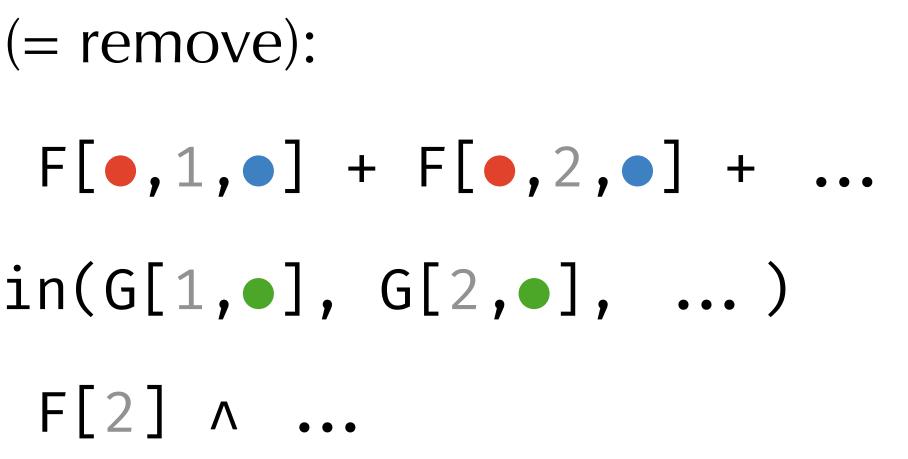


Transposition "Axis yoga"

- transposition re-arranges the order of axes:
 - transpose a matrix: $M^{T}[i,j] \equiv M[j,i]$
 - change image convention: $I'[x,y,c] \equiv I[c,x,y]$
- notate this as a superscript describing the axis permutation A^{σ} :
 - $A^{\sigma}[\bullet_1, \bullet_2, \ldots, \bullet_n] = A[\bullet_{\sigma(1)}, \bullet_{\sigma(2)}, \ldots, \bullet_{\sigma(n)}]$
 - $M^{T} = M(1,2)$
 - I' = I(1,2,3)

Aggregation

- aggegration w.r.t. any commutative monoid
 - for fields: sum, mean
 - for semirings:
 - $\mathbb{R}, \mathbb{Z}, \mathbb{N}$: plus, times, min, max
 - \mathbb{B} : and \wedge , or \vee , xor \vee
- subscript picks the axis to aggregate (= remove):
 - $sum_2(F)[\bullet, \bullet] = \sum_{e} F[\bullet, \bullet, \bullet] = F[\bullet, 1, \bullet] + F[\bullet, 2, \bullet] + ...$
 - $\min_1(G)[\bullet] \equiv \min_{\bullet} G[\bullet, \bullet] = \min(G[1, \bullet], G[2, \bullet], ...)$
 - $(\Lambda_1 F)[] \equiv and_{\bullet} F[\bullet] = F[1] \wedge F[2] \wedge ...$



Folding

- see an array A as a map $A: \mathbb{K} \to \mathbb{V}$ from key space \mathbb{K} to value space \mathbb{V}
- e.g. a real M of shape (3,2) is a map $A:(3,2) \rightarrow \mathbb{R}$
 - (3,2) stands for the set of tuples { $(i,j) \mid i \in 1..3, j \in 1..2$ }
 - M = [[1 2] [3 4] [5 6]] is a vector-of-vectors in two ways:
 - 3-vector of row vectors with cells $[1 \ 2], [3 \ 4], [5 \ 6]$
 - 2-vector of column vectors with cells: [1 3 5], [2 4 6]
- this corresponds to **folding** the map $A:\langle 3,2 \rangle \rightarrow \mathbb{R}$ into:
 - a 3-vector whose cells are 2-vectors $A:\langle 3 \rangle \rightarrow \langle 2 \rangle \rightarrow \mathbb{R}$
 - a 2-vector whose cells are 3-vectors $A:\langle 2 \rangle \rightarrow \langle 3 \rangle \rightarrow \mathbb{R}$

Folding

- the isomorphism between $A:X \times Y \rightarrow Z$ and $A:X \rightarrow Y \rightarrow Z$ is called currying; (generalized) currying of lookup tables is array folding
- we denote folding the n'th axis of A with $A^{n>}$

$$A^{n} = A^{n} \dots , A^{n-1}, \dots$$

= A[..., A^{n-1}, A^{n-1}, A^{n-1}, \dots

- folding the n'th axis moves that axis into the value space; cells become vectors
- folding multiple axes simultaneously make cells into arbitrary arrays:
 - example: fold the 1st and 3rd axes of a 3-array A, giving a vector of matrices:

 $A^{1,3} \begin{bmatrix} \bullet \end{bmatrix} \begin{bmatrix} \bullet \bullet \bullet \bullet \end{bmatrix} \equiv A \begin{bmatrix} \bullet \bullet \bullet \bullet \bullet \bullet \end{bmatrix}$

-][•]

Folding row vectors of a matrix

 $M = \begin{bmatrix} 1 & 2 \end{bmatrix} \\ \begin{bmatrix} 3 & 4 \end{bmatrix} \\ \begin{bmatrix} 5 & 6 \end{bmatrix} \end{bmatrix}$

• cellwise:

 $\mathsf{M}^{2>}[\bullet][\bullet] \equiv \mathsf{M}[\bullet,\bullet]$

• evaluate M^{2>}[3]

 $M^{2>}[3][1] = M[3,1] = 5$ $M^{2>}[3][2] = M[3,2] = 6$

 $M^{2>}[3] = [5 6]$

- M^{2>}[3] is the *third* row vector of M
- M^{2>} is a vector of row vectors of M

Folding column vectors of a matrix

- M = [[1 2]][3 4] [5 6]]
- cellwise:

 $\mathsf{M}^{1>}[\bullet][\bullet] \equiv \mathsf{M}[\bullet,\bullet]$

• evaluate M^{1>}[1]

 $M^{1>}[1][1] = M[1,1] = 1$ $M^{1>}[1][2] = M[2,1] = 3$ $M^{1>}[1][3] = M[3,1] = 5$

 $M^{1>}[1] = [1 3 5]$

- M^{1>}[1] is the *first* column vector of M
- M^{1>} is a vector of column vectors of M

N-ary operations

Elementwise

- combine arrays w.r.t. any n-ary operation
 - for fields: unary operations $-\Box$, $1/\Box$
 - for semirings:
 - $\mathbb{R}, \mathbb{Z}, \mathbb{N}$: n-ary plus, times, min, max
 - n-ary and, or, xor, unary not • B:
- e.g. cellwise definitions:
 - $(A + B)[\bullet] \equiv A[\bullet] * B[\bullet]$
 - $(A \land B)[\bullet, \bullet] \equiv A[\bullet, \bullet] \land B[\bullet, \bullet]$
 - $(\neg A)[\bullet, \bullet, \bullet] \equiv \neg A[\bullet, \bullet, \bullet]$

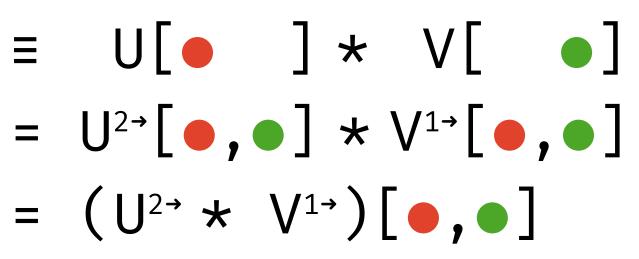
"Tensor product"

• tensor product of two vectors via broadcasting + elementwise

$$(U \otimes V)[\bullet, \bullet] \equiv U[\bullet] *$$
$$= U^{2} [\bullet, \bullet] * V$$

•••

 $= U^{2} \star V^{1}$ U & V



Matrix multiplication

matrix multiplication M·N via broadcasting + elementwise + aggregation

•
$$(M \cdot N)[\bullet, \bullet] = \sum_{\bullet} M[\bullet, \bullet] *$$

= $\sum_{\bullet} M^{3 \rightarrow}[\bullet, \bullet, \bullet] *$

$$= \sum_{\bullet} (M^{3 \rightarrow} * N^{1 \rightarrow}) [\bullet, \bullet, \bullet]$$
$$= \operatorname{sum}_2 (M^{3 \rightarrow} * N^{1 \rightarrow}) [\bullet, \bullet]$$

$$\mathbf{M} \cdot \mathbf{N} = \operatorname{sum}_2(\mathbf{M}^{3} \star \mathbf{N}^{1})$$

casting + elementwise + aggregation N[•,•] N^{1→}[•,•,•] ,•,•] ,•]

Picking

- using an array of positions P to pick cells in another array A
- written A[P]
- value space of picking array P must be key space of target array A

$$P: \mathbb{K} \rightarrow \langle s1, s2, \dots \rangle$$
$$A: \quad \langle s1, s2, \dots \rangle \rightarrow$$
$$A[P]: \mathbb{K} \qquad \rightarrow$$

- cellwise definition: $(A[P])[\bullet, \bullet, \bullet, \ldots] = A[P[\bullet, \bullet, \bullet, \ldots]]$
- this is just ordinary function composition of lookup tables!

 \mathbb{V} \mathbb{V}

Picking

- examples: picking from a vector A = [10 20 30]
 - **P** = 2 $P = [3 \ 1 \ 2]$ P = [[1] [2]]
- examples: picking from a matrix $A = [[10 \ 20] \ [30 \ 40]]$
 - P = (1,1)P = [(1,1) (2,2) (2,1)] A[P] = [10 40 30]P = [[(2,1)]]

```
A[P] = 20
       A[P] = [30 \ 10 \ 20]
A[P] = [[10] [20]]
           A[P] = 10
           A[P] = [[ 30 ]]
```

Critique

Key point: keys are tuples

- Classic arrays = cells identified by tuples of parts
- Tuples are ordered lists
- Is this a good choice?

Why tuples? Why are tuples a good choice?

- They are simple, familiar data structures
- Positionally-ordered arguments are the norm in programming
- Make machine implementation easy:
 - Arrays must be laid out in consecutive positions in linear memory (RAM)
 - This requires an ordering of axes to decide how to compile an abstract key like (3,1,2) from shape (3,3,3) into an offset into memory:

offset = (3-1) * 9 + (1-1) * 3 + (2-1) = 19

Why not tuples? Why are tuples not a good choice?

- compositions of arrays require **matching** corresponding axes from the arrays
 - getting this matching right (e.g. color channel of images with color channel of a tinting operation) may require fiddly transposition + broadcasting
- throws away semantic information (e.g. axis 3 = color channel), yielding endless bugs and tedious documentation to keep track of axes
- similar situation to early days of programming:
 - registers in a CPU are **numbered**, but humans like to use **named variables**
 - the allocation of variables to registers constantly changes
 - this is why we moved from assembly code to high level programming langauges

Rainbow arrays

Records

- solution: replace key **tuples** with key **records**
 - tuple: (5, 3, 2)
 - record: (a=5 b=3 c=2)
- the tuple has **components** labeled by **1**, **2**, and **3**
- the record has **fields** labeled by **a**, **b**, and **c**

Records

- relationship to axes:

 - tuples: axis 1 associated with the 1st slot of every key tuple • records: axis **a** associated with the "**a**" field of every key record
- relationship to shapes:

 - $(3,2,4) \equiv \{(i,j,k) \mid 1 \le i \le 3, 1 \le j \le 2, 1 \le k \le 4\}$ • $(a=3 b=2 c=4) \equiv \{ (a=i b=j c=k) \mid 1 \le i \le 3, 1 \le j \le 2, 1 \le k \le 4 \}$

Records **Rainbow notation**

- instead of writing (a=5 b=3 c=2) we color code the fields: a b c
- and then use these colors to distinguish fields:

(5 3 2)

- similarly, the shape of a matrix with 3 rows and 4 columns is

 $\langle 3 4 \rangle \equiv \langle 4 3 \rangle \equiv \langle row=3 column=4 \rangle$

• note there are no commas, as this is not a tuple (where order of components) matters), but a rainbow notation for a record (which has no order of fields)

Records **Rainbow notation**

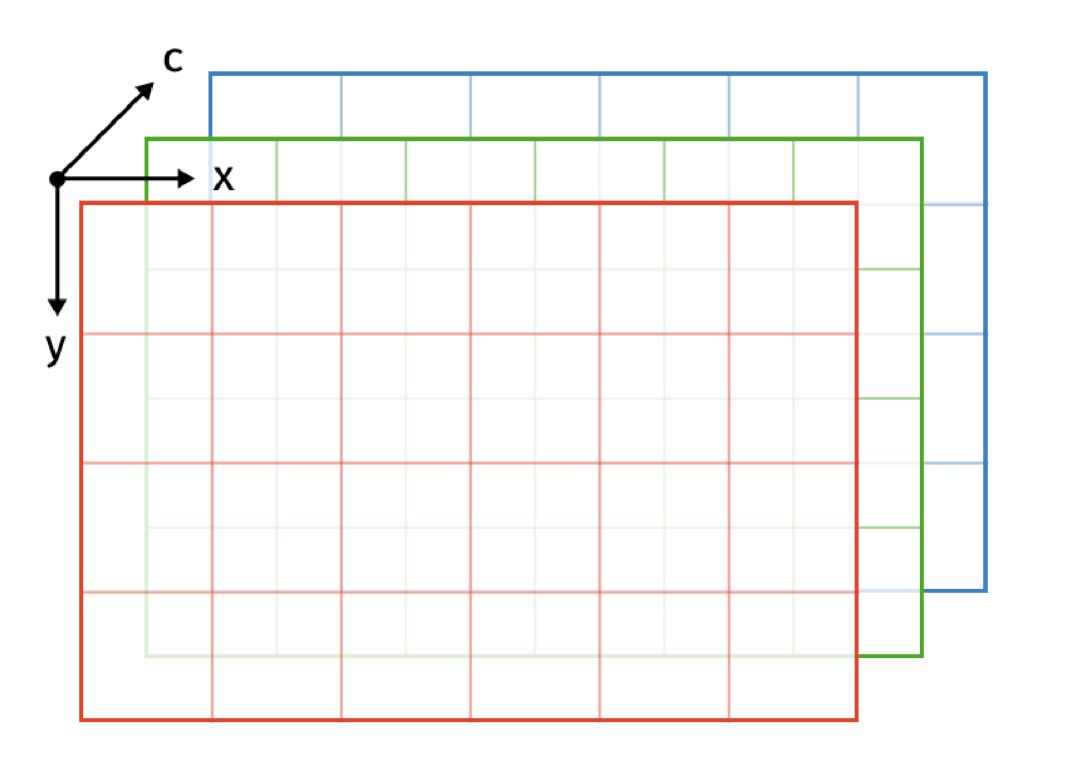
- for array lookup, we replace A[i,j,k] with A[•••] • notice again the lack of commas, since $A[\bullet \bullet \bullet] \equiv A[\bullet \bullet \bullet] \equiv A[\bullet \bullet \bullet] \equiv \bullet$... • cell value $A[\bullet \bullet \bullet]$ is shorthand for function application $A((\bullet \bullet \bullet))$

 $A[\bullet \bullet \bullet] \equiv A((\bullet \bullet \bullet)) \equiv A$

- in colorful notation A[•,•,•] color is a visual aid; only order is meaningful • in rainbow notation A[•••] order is meaningless; only color is meaningful • to denote the colors of an array (spectrum?), write A : (• • •)

Records

• example: a color image of 4 pixels high by 6 pixels wide

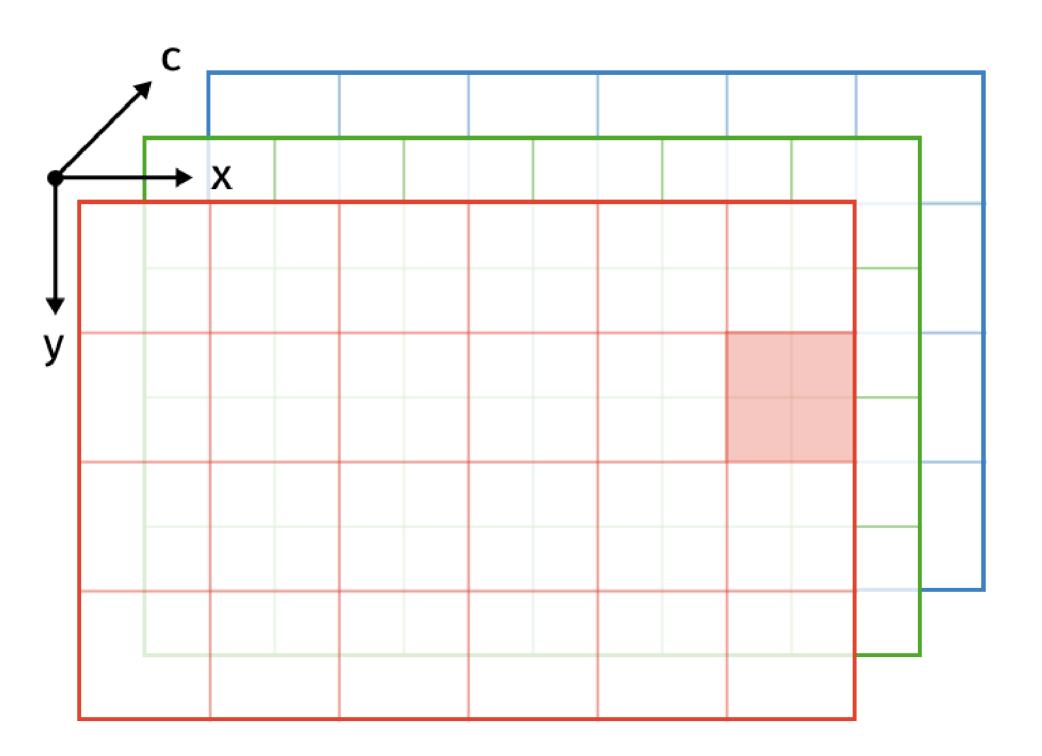


- in tuple formalism:
- in record formalism:

image has shape (4,6,3) under y, x, c convention image has shape $\langle y=4 x=6 c=3 \rangle$

Records

• example: a color image of 4 pixels high by 6 pixels wide



- in tuple formalism:
- in record formalism:

- highlighted sub-pixel has key (2,6,1)
- highlighted sub-pixel has shape $\langle y=2 x=6 c=1 \rangle$

Reorganizing the API

- how do rainbow arrays reformulate our algebra?
- transposition is meaningless, since axes do not have order
- axes can however be **recolored**, a new operation
- aggregation is unchanged
- folding is unchanged
- elementwise operation automatically broadcasts over missing colors
- broadcasting is hence unnecessary

- we eliminate one operation from our API
- we also gain semantic clarity, since the axes preserve their meaning across compositions

Recoloring

- transposition reordered axes but preserved arity; recoloring is similar
- we have a matrix $M : \langle \bullet \bullet \rangle$ but we want a matrix $\hat{M} : \langle \bullet \bullet \rangle$
- apply a map $\sigma = \{ \bullet \bullet \bullet \}$ to "translate" keys of \hat{M} to keys of M
- cellwise: $M^{\sigma}[i j] \equiv M[i j]$
- conceptually, $\sigma : \langle \bullet \bullet \rangle \rightarrow \langle \bullet \bullet \rangle$ renames a field of a key record:
 - if underlying field names are r, g, b

 $\sigma((\mathbf{r}=\mathbf{i} \ \mathbf{b}=\mathbf{j})) = (\mathbf{r}=\mathbf{i} \ \mathbf{g}=\mathbf{j})$

• in rainbow notation:

 $\sigma((i j)) = (i j)$

Recoloring as picking

- this is a special case of **picking**
- e.g., if we want to recolor $M : \langle 2 | 3 \rangle$ to $\hat{M} : \langle 2 | 3 \rangle$, we can using picking matrix: 3)] 3)]]]

$$P = \begin{bmatrix} (1 1) (1 2) (1 3) \\ (2 2) (2 3) (2 3) \end{bmatrix}$$

- this has the property that P[i j] = (i j) as needed, so $\hat{M} = M[P]$
- this is also true of transposition: a transposition is a particular kind of picking in which we look up the transposed keys in the original key
- we can **also** express broadcasting (and diagonal-taking) as a special case of recoloring, if we allow the map σ to be a more general relation than a function (specifically, it must be the pre-image of a total function)

Elementwise

- rainbows: elementwise and broadcasting are *combined*
- cellwise
- result has *union* of colors of inputs
- yields unique array op for each value op (by "lifting")

• rule: broadcast all arrays to have common set of colors, then apply operation

Elementwise vector times vector

- shared color:
 - $U: \langle \bullet \rangle$ $V: \langle \bullet \rangle$
 - U * V : (•)
 - $(U * V)[\bullet] \equiv U[\bullet] * V[\bullet]$

[1 2 3] * [0 1 2] = [0 2 6]

Elementwise vector times scalar

- scalar has no colors, so no sharing!
 - S: 〈〉 V: 〈•〉
 - S * V : (•)
 - $(S * V)[\bullet] \equiv S[] * V[\bullet]$
 - 5 * [1 2 3] = [5 10 15]

Elementwise vector times vector

• no shared color: $U:\langle \bullet \rangle$ $V:\langle \bullet \rangle$ $U * V : \langle \bullet \bullet \rangle$ $(U * V)[\bullet\bullet] \equiv U[\bullet] * V[\bullet]$ [1 2 3] * [0 1 2] = [[0 0 0] [1 2 3] [2 4 6]]

Elementwise matrix times matrix

• 2 shared colors: M: (• •) N: $\langle \bullet \bullet \rangle$ $M \star N : \langle \bullet \bullet \rangle$ $(M \star N) [\bullet \bullet] \equiv M [\bullet \bullet] \star N [\bullet \bullet]$ [[1 2] * [[0 1]] = [[0 2]][3 4] [1 0] [3 0]

Elementwise matrix times matrix

• 1 shared colors: $M : \langle \bullet \bullet \rangle$ N: $\langle \bullet \bullet \rangle$ $M \star N : \langle \bullet \bullet \bullet \rangle$ $(M * N) [\bullet \bullet \bullet] \equiv M [\bullet \bullet] * N [\bullet \bullet]$ [[1 2] * [[0 1]] = [[1*[0 1] 2*[1 0]]] = [[[0 1] [2 0]]]3 4

 $\begin{bmatrix} 1 & 0 \end{bmatrix} = \begin{bmatrix} 3 \times [0 & 1] & 4 \times [1 & 0] \end{bmatrix} = \begin{bmatrix} 0 & 3 \end{bmatrix} \begin{bmatrix} 4 & 0 \end{bmatrix} \end{bmatrix}$

Elementwise matrix times matrix

• 0 shared colors: $M: \langle \bullet \bullet \rangle$ N: $\langle \bullet \bullet \rangle$ $M \star N : \langle \bullet \bullet \bullet \bullet \rangle$ $(M * N) [\bullet \bullet \bullet \bullet] \equiv M [\bullet \bullet] * N [\bullet \bullet]$ [[1 2] * [[0 1] = [[[0 1] [1 0]] [[0 2] [2 0]]][1 0]] $\begin{bmatrix} 0 & 3 \end{bmatrix} \begin{bmatrix} 3 & 0 \end{bmatrix} \begin{bmatrix} 0 & 4 \end{bmatrix} \begin{bmatrix} 4 & 0 \end{bmatrix} \end{bmatrix}$ [3 4]]

Elementwise **Example: matrix multiplication**

• if M and N share one color, we can obtain matrix multiplication via:

 $M: \langle \bullet \bullet \rangle$ $N:\langle \bullet \bullet \rangle$ $\mathsf{M} \cdot \mathsf{N} : \langle \bullet \bullet \rangle$

 $M \cdot N \equiv sum(M \star N)$

- if M and N share no colors, we obtain Kronecker product of matrices
- if they share both colors, we obtain Hadamard product

Elementwise **Example: tinting an image**

- for color coding x, y, c image array I : (•)
- channel, we can apply the tint simply as:

I * T

broadcasting to account for x and y axes

• for a tinting factor $T:\langle \bullet \rangle$ such T = [1.0, 1.0, 0.5] as which halves blue

• this is simpler and more straightforward than the classic picture, which requires

Other operations

- aggregation, folding, picking remain as before
- however, we color these operations rather than subscript them
- e.g. for $F: \langle \bullet \bullet \bullet \rangle$ we can "sum over green":

$Sum(F)[\bullet\bullet] \equiv \sum_{\bullet} F[\bullet\bullet\bullet] = F[\bullet1\bullet] + F[\bullet2\bullet] + \dots$

Advantages

- rainbow array algebra keeps semantic meaning (e.g. color channel, batch number, time) attached to array axes, and abandons axis order
- this leads to fewer fundamental operations, greater clarity
- compositional properties of this alternative formulation are underexplored (e.g. categorical foundation)
- the future of array programming: various deep learning practictioners (e.g. one of the inventors of Torch) are pushing for labeled axes to become the standard

Future directions

- alternative diagrammatic formulation in terms of part / key dataflow
 - e.g. taking the diagonal is copying of flow, broadcasting is deleting a flow
 - flows compose
 - categorical foundations, and connections to profunctors
- software library for Mathematica
- explain connections to hypergraph rewriting
 - e.g. matrix multiplication measures combinatorics of graph composition
 - adjacency arrays of hypergraphs are... higher-arity arrays, obviously

References

- Rush: "Tensors considered harmful"
- <u>Maclaurin, Paszke et al: Dex project</u>
- Chiang, Rush, Barak: "Named Tensor Notation"
- Hoyer et al: XArray project
- Zapata-Carratala, Arsiwalla, Beynon: "Heaps of Fish"