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Abstract

1 Introduction

1.1 Aim

In this project, an attempt will be made to produce a simulated environment in
which virtual “creatures” compete for space and energy. We will then examine
the ability of evolution by natural selection to drive the increase in fitness of
the population via differential reproduction.

What choices should be made for the structure of the simulated environment?
Two constructs are at the very least necessary: space in which creatures can be
located, and a population of creatures. While the spatial extent of organisms
in real life is arbitrary, ranging from a scale of 10−8 m to 102 m in all 3 spacial
dimensions, we will assume for simplicity that all organisms in the model are the
same size. Moreover, we will assume space is discretized into individual “cells”,
and laid out in a 2-dimensional rectangular lattice, called the grid.

How will the creatures be constructed? The orthodox view is that the following
are necessary but not sufficent conditions for an entity to be considered living:

• Metabolism
• Reproduction
• Adaptation
• Response to Stimuli

The study of computer simulations in which these features emerge is known gen-
erally as “Artifical Life”. It is a cross-disciplinary field involving scholars from
computer science, evolutionary biology and ecology, and applied mathematics.

The virtual creatures we will examine will be designed to satsify all four of these
conditions. In Section 3 we will examine more closely the grid and creature
constructs, and how various design decisions were made to satisfy these criteria.
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1.2 Previous Work

Tierra is a software simulation written by the ecologist Thomas Ray. In Tierra,
a virtual machine1 executes short programs that contain instructions to copy
themselves to new memory locations on the virtual machine. Each short pro-
gram is taken to be a virtual organism.

In essence, different organisms compete for execution time on the virtual ma-
chine. Each copying operation has a small chance of introducing an error into the
new copy of the original program. By virtue of this fact variation is introduced
into the population, and programs that are shorter or use other techniques to
acquire more time on the virtual machine will copy themselves faster and come
to dominate the population. In this manner natural selection operates on the
population to produce programs that are better adapted to the virtual environ-
ment.

Experiments with Tierra have revealed patterns of parasitism, in which ex-
tremely short programs exploit longer programs to self-replicate. A derivation
of the Tierra program known as Avida has been used extensively in artifical
life research. It has been used to study the problem of “irreducible complexity”
in which features requiring several non-adaptive mutations emerge [1]. Other
interesting work involving Avida has studied specialization of digital organisms
into various ecological niches [2] and how evolution affects genome complexity
[3].

Sugarscape is an agent-based simulation written by the M.I.T. scholar Joshua
M. Epstein and Robert Axtell [4] in which individual agents in a grid-like lattice
make economic decisions about how to trade two seperate resources that are
both essential for survival, abitrarily called “sugar” and “spice”.

Another example of research conducted in the field of artificial life is [5], in
which digital organisms similar to the ones developed in this project compete
and/or cooperate with each other for space and energy. Results showed that
various familiar game-theoretic cooperative strategies emerged, as well as some
that had not been seen before.
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1A virtual machine is a simulation of a Central Processing Unit operating on one or more
programs. In other words, a virtual machine is a simulated computer running on a real
computer.
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2 Selected Topics

In this section we will review a few basic concepts which will be useful in our
discussion of the Floatworld virtual environment. First we will discuss artificial
neural networks, the constructs used to implement a primitive form of intelli-
gence to govern the virtual creatures. We will also discuss the classical concept
of natural selection, and the application of this idea in the field of genetic algo-
rithms.

2.1 Artificial Neural Networks

An Artificial Neural Network (ANN) is a generalized, simplified model of the
computational activity performed by networks of neural cells in many living
organisms. As in biological neural networks, an ANN is divided into a fixed
number N of neurons, or nodes, which communicate with each other using a
fixed set of connections. Each neuron is labelled with a natural number n ∈ N
where N = {1, 2, . . . , N}. The activity of an individual neuron is represented
by a real number αn for n ∈ N, where activity is the analogous concept to the
firing rate of a biological neuron.

Each connection from neuron m to neuron n has an associated weight wnm

which determines how the activity of the first neuron will influence the activity
of the second neuron. Roughly speaking, a positive weight means that activity
of the first neuron will increase the activity of the second neuron, and a negative
weight means the activity of the first neuron will decrease the activity of the
second neuron. If wmn "= 0, we say that neuron n is connected to neuron m.

Time is discretized into steps t = 0, 1, 2, · · · . The activity of a neuron at any
given timestep αn(t) is determined by the activity of all the other nodes at the
previous timestep according to the function

αn(t) = f

(
∑

m∈N

wnm αm(t − 1)

)

(1)

In other words for each neuron, the weighted sum of the activity of all the
neurons is passed through the a function (the so-called activation function)
f : R → R to determine the future activity of the neuron n. Different neurons
exhibit different behaviour because the weighting factors wnm depend explicitly
on the neuron n.

In fact the notation wmn suggests a computationally efficient way of computing
the activity of an ANN recursively: using matrix multiplication. If we use the
column vector −→α (t) = (α1(t), α2(t), · · · , αN (t)) to represent the activity of all
the neurons in the ANN at time t, then the recursation relation in Equation 1
takes the form

−→α (t) = F (W · −→α (t − 1)) (2)

where W is the matrix whose elements are given by wij for i, j ∈ N, and
F : RN → RN is the map induced by f : R → R.
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2.2 Adjacency Matrix

A directed graph consists of a set of verices V and a set of edges E. An edge is an
ordered pair (u, v) where u, v ∈ V . A graph can be represented visually whereby
each node is a point and each edge is an arrow connecting the corresponding
points.

Let a directed graph have n vertices, and label the vertices of the graph by the
integers {1, · · · , n}. The adjacency matrix G of a directed graph is the square
matrix of size n in which

Gij =

{
1 (i, j) ∈ E

0 (i, j) "∈ E

As an example, Figure 1 shows both a simple graph and the adjacency matrix
of the graph. Vertex numbers correspond to matrix columns and rows.






0 0 1 1 0 0
0 0 1 1 0 0
0 0 0 0 1 1
0 0 0 0 1 1
0 0 0 0 0 0
0 0 0 0 0 0






Figure 1: Adjacency matrix and corresponding graph

2.3 Network Topologies

We can consider an ANN to be weighted finite directed graph G, i.e. a finite
directed graph in which the adjacency matrix G does not merely take values
in {0, 1} but in R. Note that in an adjacency matrix, wij = 1 implies vertex
i connects to vertex j, whereas in the weight matrix wij = 1 implies neuron j
connects to neuron i. Therefore, GT = W . From this perspective the relation
described in Equation 1 implements a model in which the graph of the ANN is
fully connected, and every neuron has a connection with every other neuron.

Equation 1 models a neural network in which the notions of input and output
are not defined. Information is not presented to or extracted from the neural
network in any explicit fashion. Usually ANNs are introduced differently, in
which the topology of the graph G is constrained in some way.

In so-called feed-forward ANNs the graph G is a directed acyclic graph. This
implies that the vertices of G can be topologically sorted: formally, there
exists a map d : N → N such that

wmn "= 0 =⇒ d(n) < d(m)

In simple terms the activity of neuron m in such an ordered or layered network
is only dependant on the activity of neurons prior to it in the order, i.e. those
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n for which d(n) < d(m). Such networks are often depicted graphically in a
layered format.

In many kinds of neural network devoted to information processing we speak
about the sets of input neurons N↓ and output neurons N↑. These are
precisely the neurons which have no connections to them, and no connections
from them, respectively. Formally we can write

N↓ =
{
n ∈ N

∣∣ (∀m ∈ N) wnm = 0
}

N↑ =
{
n ∈ N

∣∣ (∀m ∈ N) wmn = 0
}

The feed-forward ANNs mentioned above are used in many practical applica-
tions. In general the activity of the input neurons in a feed-forward ANN is
fixed by a time-dependant function, so that

(∀n ∈ N↓) αn = f(t, n)

Intuitively f has the effect of “feeding” information into the ANN. The activity
of the neurons in the set N↑ is then understood to be the output of the entire
system. Usually the function f is time independant, and in that case the be-
haviour of the neural net is equivalent to some function H : R|N↓| → R|N↑|. This
is because the ordering on the feed-forward ANN makes it possible to calculate
the time-independant activity of the output neurons in a single computational
pass, without explicit use of the timesteps t = 0, 1, 2, · · · .

However, in some applications the neural net has to respond to time-varying
inputs. In other applications a strict-ordering on the graph G is not possible
because it is cyclic, and so the ANN does not necessarily have a fixed output
even if f is constant with time. Both of the previous conditions will be true of
the neural networks used in this project.

Such networks are called feed-back neural networks, and their activity usually
has explicit time dependance. However, such a network can still be considered
a function H : R|N↓| × RNS → R|N↑| × RNS , where NS is the dimension of
the internal state of the ANN, being just the number of neurons that have
connections that “feed back into” the network, i.e. the number of n "∈ N↓ ∪N↑

for which there is at least one m "∈ N↑ such that wmn "= 0.

2.4 Weight Masks

Under some circumstances, it is advantageous to fix many of the weights in the
weight matrix W to be zero. In this way, the graph of the ANN are constrained
to a subgraph of the fully connected N -graph. This might be useful to enforce
a feed-forward structure, or more generally to ensure that number of degrees of
freedom of the ANN is a subset of the full number N2.

Let M be the transpose of the adjacency matrix of a graph with N vertices.
Taking M.W (where . indicates point-wise multiplication of matrix entries) en-
sures that Mij = 0 =⇒ (M.W )ij = 0. In other words M.W is the weight
matrix of an ANN whose graph is a subgraph of the graph of the ANN with
weight matrix W .
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2.5 Genetic Algorithms

Evolutionary computation describes the paradigm in which principles of
Darwinian evolution are employed in a computer code to develop solutions to
a given problem. Many different problems can be approached from the evolu-
tionary computation perspective. It is required of the problem that potential
solutions can be objectively judged on their suitability or quality by an appro-
priate function.

Darwinian evolution among living beings is often described colloquially as “sur-
vival of the fittest”. This, however, is a tautology: fitness is defined precisely
to be the tendency of an organism or entity to survive and reproduce. How-
ever, the same is not true of computer codes using Darwinian evolution. In the
context of genetic algorithms, the “fitness” of a solution is imposed from the
outside; it is described explicitly using a fitness function f : S → R, which is
a function that evaluates the quality of a solution in the solution space S. A
higher value of f(s) means a better solution s.

The process by which an adequate solution is produced is simple to describe: 1)
random changes are made to the current best solution to produce a population
of new solutions 2) these solutions are evaluated by the fitness function 3) the
fittest solution or solutions are then mutated (and in some models, combined
with each other) to produce the next population. This procedure is iterated
hundreds or thousands of times until it has converged on a solution. It is a
general feature of such algorithms that random variation is introduced into the
population at each generation and the fittest solutions are selected to produce
the next population.

This process forms a rough analogue of the biological scenario in which Dar-
winian evolution occurs in the biological realm, in which natural selection acts
on random genetic variation to produce an incremental increase in the quality
or fitness of the population of organisms as a whole.

We can explicitly describe the situation in the following way. We first assume
each solution is described as a vector in RN . A population of M solutions is
given by a sequence S = (sn), n ∈ {1, · · · , M}.

The population at time t + 1 is given by

St+1 = (ŝt, V (ŝt), · · · , V (ŝt))

where ŝt ∈ St is the “best solution” at time t, i.e. the element of the population
St such that

s ∈ St =⇒ f(s) ≤ f(ŝt)

and where f : RN → R is the fitness function and V : RN → RN is a stochastic
mutation function that introduces random changes or “mutations” to the
vector, selected from some random distribution.

We easily obtain that f(ŝ(t)) is monotonically increasing in t, and so the quality
of the solution found by this iterative procedure will continually improve (or for
a badly designed genetic algorithm, stay constant).

This is a rough description of how many genetic algorithms work. Actual imple-
mentations are usually more complicated and there are many subtleties involved
that have not been mentioned here.
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3 Design of Floatworld

3.1 Introduction

In Section 1.1 we reviewed the four most basic properties required of any living
entity, which were:

• Metabolism
• Reproduction
• Adaptation
• Response to Stimuli

We now review the approach to satisfy each of these requirements within the
Floatworld virtual enviroment.

Metabolism can be defined as the utilisation by an organism of an external
supply of energy in order to maintain its structure and reproduce itself. In
Floatworld , we will formalise the notion of energy: the environment, described
in Section 3.2, will contain localised distributions of energy, as described in
section 3.10, which virtual creatures can acquire in order to promote their sur-
vival. Virtual creatures will require energy in order to perform the basic actions
of moving around within the virtual environment and reproducing themselves.
The mechanism underlying this form of metabolism will be discussed in Section
3.6.

Reproduction is the ability of an organism to produce an accurate copy of
itself. Individual creatures will be capable of reproduction. In the simple Float-
world model, all reproduction will be asexual, in that creatures will create
offspring independantly of one another.

Adaptation is the ability of a lineage of organisms to become better suited to
their environment as the generations go by. To ensure that the virtual crea-
tures are capable of adaptation, we will specify that each creature has a fixed
genome, a body of information that uniquely determines its behaviour in the
virtual environment. This genome will be subject to random mutation upon
reproduction of the creature, the resulting mutations affecting the genomes of
the offspring of the parent creature.

For creatures to respond to stimuli, some form of information processing will
be required. Creatures will have to use information from their local environment
to decide on a course of action. The constructs we will use to achieve this will
be feed-back neural networks, as described in Section 2.1. Therefore the genome
mentioned above will consist of the weight matrix that completely specifies the
action of a single ANN.

3.2 The Grid

The virtual environment or grid is divided into a finite number of cells arranged
in a rectangular array of size Nr ×Nc. Formally we denote the grid by E, with
elements, or cells, written as eij . Each cell eij has eight neighbouring cells,
illustrated below:

e(i−1)(j−1) e(i−1)j e(i−1)(j+1)

ei(j−1) eij ei(j+1)

e(i+1)(j−1) e(i+1)j e(i+1)(j+1)
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To avoid edge effects periodic boundary conditions are applied, so that for all
i, j, e0j = eNrj and ei0 = eiNc

.

Formally, each cell eij is a pair:

eij = (ξ, ε)

where ε ∈ R+, and ξ ∈ K ∪ {0}. ε denotes the amount of energy that a cell
contains, which is available for consumption by creatures. ξ denotes the creature
currently occupying the cell. If there is no creature, ξ = 0.

As before, the elements of E are time-dependant, which will be indicated where
necessary by E(t) and eij(tk). We will often use E to mean merely the matrix
of energies ε.

3.3 Creatures

The grid is populated by a number of virtual creatures. Each creature is under
control of an ANN with a fixed number N of neurons as described in Section
3.13. The population of creatures at a time t is indicated by K(t) or just K.
Formally the state of each creature is specified by a (time-dependant) vector k:

k = (W,α, ε, γ, ρ, δ)

• W ∈ RN2

is the genome (or weight matrix) that determines the ANN
• γ ∈ N is the age in time-steps of the creature (with a maximum of 100)
• ε ∈ R+ is the energy of the creature
• α ∈ RN is the activation vector of the ANN
• ρ ∈ ZNr

× ZNc
is the position of the creature on the grid.

• δ ∈ Z4 is the orientation of the creature on the grid

For a particular creature k ∈ K, we denote its weight matrix by Wk, its age
by γk, and so on. Creatures are limited to an age of 100, after which they
automatically die.

Orientations represent which of the four cardinal directions the creature is fac-
ing, and are encoded as follows: if we visualize the grid as a matrix written in
the normal fashion, δ = 0 corresponds to up, δ = 1 corresonds to right, δ = 2
corresponds to down, and δ = 3 corresponds to left.

3.4 Input

For a virtual creature to be able to behave in a way approrpriate to its local
environment, the ANN controlling the creature must be provided with suitable
inputs. What inputs are suitable? Here, a distinction is useful between exter-
nal inputs which provide the ANN with access to information about the local
environment and internal inputs which provide the creature with information
about its current state.

Six external inputs are provided in the current model, of two seperate types.
Three of the inputs give the ANN information about the local distribution of
energy, the other three provide information about the local distrubition of other
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creatures. How shall local energy and creature distributions be reduced to single
real numbers? To clarify the approach, we define a “kernel matrix” below.

Let M be a matrix of size m × n. If K is a square matrix of size 2t + 1 (where
t ∈ N), then we call K a kernel matrix with a position-dependant kernel
product K · M [u, v], defined by

K · M [u, v] =
t∑

i=−t

t∑

j=−t

K(t+1)+i,(t+1)+jMu+i,v+j

where indices of M are consider modulo the size of the matrix, so Mi+m,j+n =
Mi,j .

This idea can be used to naturally define a vision function for a creature:
it is a weighted sum of the local environment of the creature, where the local
environment is specified in matrix form. The weights used are contained in a
kernel matrix. Figure 2 illustrates the three kernels K1, K2, K3 used for this
purpose in Floatworld .

Figure 2: Three kernels used for vision functions. The more and less intense
shades represent values of 2.0 and 0.5 respectively. All other entries are zero.

Assume k is a creature with δk = 0 and ρk = (u, v) (if the creature has a
different orientation, the kernel matrices are rotated accordingly). We calculate
the three vision functions ei by taking the kernel product of each of these kernels
with the energy matrix at the creature’s position:

ei = Ki · E[u, v] i ∈ {1, 2, 3}

Then e1, e2, e3 summarise the local distribution of the energy in the left, for-
ward, and right directions from the perspective of the creature. Note that the
squares immediately to the left, in front of, and to the right of the creature have
the largest contribution to these three summaries, with neighbouring elements
playing a smaller role.

To accomplish the same task for the distribution of creatures, we use the same
kernels as above but we replace the enery matrix E with another matrix termed
the occupancy matrix O. O is defined to be

Oij =

{
1 ∃k ∈ K, s. t. ρk = (i, j)

0 otherwise

In this fashion we obtain six vision functions e1, e2, e3, o1, o2, o3 which feed in-
formation about the local environment into the input neurons of the creature’s
ANN.
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3.5 Internal Inputs

The inputs to a creature’s ANN are not limited to external factors. The simplest
example illustrating such an internal input is the creature’s energy: creatures
must know when they have enough energy to reproduce, otherwise their at-
tempt at reproduction might result in premature death (reproduction entails
an energy cost of 50 units, so creatures must have at least 50 energy to survive
reproduction).

It is also important to provide other inputs. To ensure that a creature might
implement different strategies at different periods in its lifecycle, we provide the
creature’s age as another input to its ANN.

Two further internal inputs are provided: the first is a constant input of +1.0.
This is important for technical reasons, namely that neurons can be suitably
biased regardless of the other inputs. As an example, an ANN might implement
a strategy in which the creature always moves forward, unless some other cir-
cumstance occurs. These default behaviour can be encoded as a positive weight
between the constant input and the output neuron corresponding to the forward
action.

Lastly, a random input is provided to allow for unpredictable strategies (to give
the creatures “free will”, so to speak)

The complete list of internal inputs is:

• creature energy

• creature age

• constant value of +1.0

• random real in range (-1.0, +1.0)

3.6 Actions

Creatures possess energy ε, which they must use in order to perform actions
in the world. There are n = |N↑| actions, and each action 1 ≤ a ≤ n has
associated with it an energy cost cost(a). A creature that performs one of the n
available actions has the associated energy cost subtracted from its total energy
ε. If subtracting this cost from ε would result in ε ≤ 0, the creature “dies”: it
is removed from the grid.

Which action a creature performs in a given timestep is determined soley by
the activity of the output neurons in the creature’s ANN. Let σ index the set
of output neurons N↑, so that the activity of the n output neurons are given
by ασ(1), ασ(2), · · · , ασ(n). Then the selected action is the j’th action, where
1 ≤ j ≤ n is such that

ασ(j) ≥
{
ασ(i)

∣∣ 1 ≤ i ≤ n
}
∪ {1}

Essentially, the action corresponding to the neuron with the highest activity is
selected, with the condition that it be above a threshold of 1. If there is no such
action, i.e. if (∀i) ασ(i) < 1, then the creature performs no action. Note this
still possesses an energy cost cost(0), which is intended to ensure that creatures
have a constant “metabolism” even when not performing any actions.
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In the model that was implemented, a creature can execute one of the following
four actions, with the associated costs

i cost(i) action name
0 0.1 no action
1 1.0 move forward
2 0.5 turn left
3 0.5 turn right
4 50 reproduce

These actions are described in more detail in the following section.

3.7 Movement

When a creature k ∈ K moves, the cell in front of the creature is checked. Here,
“in front” refers to the cell whose relative positon depends on the orientation of
the creature and is, as usual, taken modulo the size of the grid. If it is occupied
by another creature, nothing occurs. If it is empty, the creature position ρk is
updated to equal the position of the cell in front of the creature, and the energy
in that cell is added to the creature:

εk ← εk + Eρk

Eρk
← 0

3.8 Reproduction

When a creature k ∈ K reproduces, the grid cell in front of the creature is
checked. If it is occupied, nothing happens. If it is empty, a new creature k′ is
instantiated and placed at that location, with random orientation.

The new creature has εk′ = 10 initially, and Wk′ = M(Wk), where M is the
mutation function. The mutation function is described in the next section.

3.9 Mutation

In biological systems, mutation happens randomly when errors in gene copying
and recombination result in small changes to the sequence of As, Ts, Gs and
Cs in the genetic code of the daughter organism. Mutation in the Floatworld
model also occurs randomly. The “gene” equivalents of a Floatworld creature
k are considered to be the weights in the ANN controlling a creature, i.e. the
elements of Wk.

In Floatworld , there are two types of mutation, and each weight wij ∈ W has
small probabilities p1, p2 of undergoing mutation of each type. The majority of
weights of a creature’s ANN are zero, due to the network mask that is applied
to limit the toplogy of the ANN. These weights remain zero for all time, and so
only weights that have corresponding mask value of 1.0 are eligible for mutation.
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For any given weight w in the weight matrix W , the corresponding weight w′

in M(W ) is calculated as follows:

w′ =






Random(w − m1, w + m1) with probability p1

Gauss(w, m2 · w) with probability p2

w otherwise

The parameters m1 and m2 control two different types of mutation. The first
type is a random change drawn from a uniform distribution that is not depen-
dent on w, and the second type is a random change that is proportional to the
current weight value. It has a gaussian distribution around the previous weight
value, with standard deviation being some fraction m2 of the previous value w.

The second factor ensures large weights undergo larger random fluctations via
mutation than smaller weights; this is a sensible way to ensure that large weights
do not effectively become static due to their modulus. The first factor ensures
zero weights are still capable of becoming non-zero.

Experimention yielded sensible values of

p1 = 0.05/N p2 = 0.1/N m2 = 0.1 m1 = 2.0

3.10 Energy Input

In the Floatworld system, the total energy does not remain constant. Creature
actions, such as movement and reproduction, remove energy from the system.
To ensure that creatures can continue to survive and reproduce, energy must
be continually injected into the system through a device known as a feeding
scheme. To define feeding schemes we define their effect at each timestep on the
energy matrix E. A simple feeding scheme defines a possibly time-dependant
feeding pattern matrix E′(t) of the same size as E. The feeding pattern is
then added to the energy matrix E at each timestep:

E(t + 1) = E(t) + E′(t)

However, there is a significant problem with this technique. Experiments have
shown that placing no limit on the magnitudes to which an element of E can
reach results in highly unstable population sizes. This occurs for a simple reason.
When the population is small, the total energy Etot =

∑
i,j Eij builds up to very

high values, resulting in a large increase in the number of creatures. These large
populations then rapidly consume all the energy, which precipitates a large drop
in the number of creatures when there is not enough energy to sustain them.
The eventual result is an unstable population size that can sometimes lead to
total extinction.

A simple solution is to modify the feeding scheme, using the rule

Eij(t + 1) = min
{
Eij(t) + E′

ij(t), emax

}

where emax is a sensible limit on the energy that any particular grid cell can
contain. A value of emax = 20 yields good results.
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3.11 Feeding Patterns

The choice of what type of feeding pattern to use is an important one. The
simplest and least interesting feeding scheme is constant, where E′ = c for some
small positive constant c. However, such a feeding scheme results in only very
simple strategies, for the obvious reason that creatures are not forced to evolve
behaviour that is sensitive to the local energy distribution, as the local energy
distribution is, on average, the same everywhere.

A more interesting feeding pattern, called spot feeding, gives better results.
In spot feeding, there is a fixed number n of spots of fixed radius r that are
located at grid positions (ui, vi) for i ∈ {1, · · · , n}. The energy pattern is then
defined by

E′
jk = e ×

∣∣∣
{
1 ≤ i ≤ n

∣∣ d((ui, vi), (j, k)) < r
}∣∣∣

where d : Z2 × Z2 → R is the usual metric on the grid of size Nr × Nc with
periodic boundary conditions, namely the space (Z/Nr) × (Z/Nc).

Thus E′ is the matrix on which each cell within a radius r of a spot position
has been incremented by e. Here e is chosen to be some small real number, for
this project e = 0.1 was chosen. An example of the energy distribution resulting
from such a feeding pattern is shown in Diagram 3:

Figure 3: Diagram illustrating results of spot feeding on a grid of size 100×100.
There are 25 spots of radius 8 and energy 0.1. Darker cells contain more energy.

An extension to this scheme is to specify a small jump probability pj , the
probability that at each timestep a given spot will be assigned a new, random
position. This achieves good results because it ensures that creatures are forced
to adapt to a gradually changing distribution of energy. A value of pj = 0.002
was used for this project.
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3.12 Stochastic Spot Feeding

Another interesting feeding scheme called stochastic spot feeding is a varia-
tion on spot feeding but does not explicitly use a feeding pattern. It also uses
spots of fixed radius, energy, and randomly changing position, and on aver-
age injects the same amount of energy into E as does spot feeding. At each
timestep, and for each spot of radius r at position (u, v), the stochastic spot
feeding algorithm randomly chooses -f × πr2. cells of E within a distance r of
(u, v) and increments each cell by an amount e/f (up to the maximum emax).
Another words, some randomly selected fraction f of the cells within each spot
are fed. A value of f = 0.02 results in both good performance and interesting
creature strategies.

Stochastic feeding results in an energy matrix E that has a “noisy” appearance.
An example of the energy distribution resulting form stochastic spot feeding is
shown in Figure 4, where the positions of the spots are the same as for Figure
3.

There are two major advantages to using stochastic spot feeding:

• computationally, it is significantly faster for large grids

• it produces more interesting creature strategies

Ordinary spot feeding results in energy spots that have a well defined boundary.
In experimental runs it is found that creatures very rapidly learn to recognise
and stay within this boundary. The noisy spots resulting from stochastic spot
feeding do not have clearly defined boundaries, and creatures develop more
robust behaviour to take advantage of the spatial distribution of energy.

Figure 4: Diagram illustrating results of stochastic spot feeding on a grid of size
100 × 100. There are 25 spots of radius 8 and energy 0.1. Darker cells contain
more energy.
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3.13 The Creature “Brain”

In this section we give more information about the ANN and how it is is simu-
lated.

For Floatworld the choice of activation function (see Equation 1) was the arct-
angent function atan : R → (−1, 1), which is standard choice for many ANNs.

What choice of network topology is appropriate? A general principle with ar-
tificial neural networks is to choose the minimum possible number of neurons,
and also the minimum possible number of non-zero weights. The reason for
this is that evolution by natural selection can be understood to be a directed
search (or optimization) in the space of all genomes towards “fitter” genomes.
The larger the number of non-zero weights that can be adjusted, the higher the
dimension of the genome space and the more difficult the optimization becomes.
In Sections 3.4-3.6 we discussed the ANN inputs and outputs. We now discuss
the network topolgoy as specified by the network mask.

There are two obvious constraints that we can begin with. Firstly, by defini-
tion, there should be no connections to inputs neurons, and there should be no
connections from the output neurons.

Our second constraint is that we wish for the creature strategies to have some
persistant state. That is, we wish for the ANNs to be able to “remember”
past situations. In a purely feed-forward network, the behaviour of the output
neurons depends only on the behaviour of the input neurons and so has no
capacity for memory. We therefore require a feed-back ANN. We can then
achieve a feed-back structure by specifying 3 additional neurons connected to
both output and input neurons and allowing these 3 neurons to connect to
themselves and each other.

Therefore our network mask has the following structure:

• input neurons connect to both the 3 “hidden” neurons and the output neurons

• the 3 “hidden” neurons connect to one another and the output neurons

There are 6 external inputs (consisting of two sets of three vision function inputs)
and 4 internal inputs (consisting of energy, age, random and constant inputs).
We have also specified 3 hidden layer neurons, and 4 output neurons (consisting
of move forward, left, right, and reproduce outputs), so N = 6 + 4 + 3 + 4 = 17
neurons. We obtian a network mask of

M =






0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0






We see that M contains a non-zero sub-matrix of size 13×7. Any creature that
evolves will only have non-zero weights within this sub-matrix, and so from
this point on, any diagrams illustrating creature weight matrices will have these
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reduced dimensions. Moreover, matrices will be depicted such that positive
weights are coloured red, negative weights blue, and zero weights are left blank.
Less intense colours will represent smaller weight magnitudes.

We will often refer to the a creature’s weight matrix and its genome inter-
changeably (they mean the same thing: the matrix W that is inherited by child
creatures from parent creaturs). We will also refer interchangeably to the crea-
ture’s genome and the strategy the creature persues, the terminology being that
the genome implements a given strategy and that a strategy is embodied by
a given genome.
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3.14 The Initial Genome

For natural selection to apply in a simulation, an initial population of creatures
is needed that has the capacity to survive and reproduce, even if does so using
an inefficient strategy. In all the experiments conducted in this project, one
extremely simple initial genome was used to seed this initial population.

The strategy that was used is summarised by the following simple algorithm:

• if ε > 120, reproduce

• otherwise, move forward

To implement this strategy via an ANN, we use only three non-zero weights.
Let us denote th constant input neuron and energy input neuron by cons and
energy respectively. Also denote the output neurons corresponding to the move
forward and reproduce actions as move and rep.

Then the only non-zero ANN weights are:

wmove,cons = 1

wrep,cons = −159

wrep,energy = 1

A creature with the above ANN will have a default action of move forward,
because the αmove ≥ 1. However, if ε > 120 then αrep = 1.0 × wcons,rep + ε ×
wenergy,rep = −159 + e > 1, and so the reproduce action will override the move
forward action and the creature will reproduce.

This strategy results in a population of creatures that move in straight lines
and reproduce when they have acquired enough energy from the grid. Figure 5
illustrates an example of several creatures implementing this strategy.

Figure 5: Example simulation illustrating the simple strategy implemented by
the ANN described above. Previous creature positions are shown by simple
trails. Three recently born creatures can be seen emerging from the trails of
their parents.
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4 Creature Behaviour

In this section we examine the strategies that result when natural selection acts
on the initial genome. In Section 3.14 we saw how the initial genome produces
a creature that moves in straight lines and reproduces when its energy exceeds
a threshold. We now constrast this behaviour with that of an evolved creature.
A single simulation was performed using 200,000 timesteps, and the resulting
genome and its behaviour are discussed below.

A panel displaying a sequence of creatures from the evolutionary timeline leading
up to the final creature is display in Figure 6. For more information about how
this sequence was generated, see Section 6.1.

Figure 6: Panel displaying the progression of genomes over 200,000 timesteps
of evolution. Positive weights are coloured red, negative weights blue, and zero
weights are left blank. Less intense colours represent smaller weight magnitudes.

4.1 Colonisation

The speed at which a single creature can colonise a new feeding spot is an
important factor in its fitness. The following diagram illustrates the ability of
the evolved creature to rapidly colonise a feeding spot. Individual frames are
taken at intervals of 20 timesteps.

Figure 7: Illustration of colonisation of a new feeding spot. Each frame repre-
sents 20 timesteps of the simulation. Creatures in the process of reproduction
are coloured red
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4.2 Scavenging

Figure 8 illustrates the evolution of the ability to detect which direction a crea-
ture should turn to acquire the most energy. A creature is presented with two
trials of “breadcrumbs” of energy which it follows accurately in both cases.

Figure 8: Illustration of scavenging behaviour of an evolved creature. Both
initial energy distributions result in the same path-following behaviour.

4.3 Migration

Once the evolved creature has colonised a feeding spot it usually does not leave
it. Occasionally a feeding spot will form at a location on the grid and subse-
quently jump, leaving a deposit of energy that is no longer renewed. One of
these deposits can remain undiscovered for many hundreds of timesteps.

A curious behaviour occurs when it is finally discovered, however: after the
deposit is consumed, the resulting creatures rapidly disperse away from the
deposit. A timeline of this behaviour is displayed in Figure 9. It is possible
that creatures have evolved to recognise such deposits as distinct from normal
feeding spots and use them to “finance” rapid reproduction to aid expeditions
to new territory.

Figure 9: Rapid consumption followed by migration.
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5 Species Coloring

5.1 Introduction

At any time t the population K(t) is not homogenous: there is a variety of
different strategies being employed by members of the population. How are we
to analyze this variety?

For visual purposes it would be ideal to have a simple visual quality of each
creature, such as colour, give an indication of the underlying weight matrix. To
quantify this idea, we now define similarity of matrices and colours:

Let d(W, W ′) denote the distance between the two matrices W, W ′ as given by
the l2 norm: d(W, W ′) = ||W − W ′||2. We define a colour (more precisely, a
hue) as a real number c in the range [0, 1]. The range of colours in [0, 1] is shown
below in Diagram 10. Colour is represented cyclically in the usual fashion, so
the colour c ≡ 1+c. Therefore the colour space is mathematically represented
as R/Z. Then distance between two colours is simply the normal metric in R/Z.

Figure 10: Color spectrum [0, 1], the left end corresponding to 0 and the right
end to 1.

Let T = {W1, · · · , Wn} be a set of matrices of the same size. What we desire
is a map ϕ : T → R/Z such that distances are preserved, i.e. such that ϕ is an
isometry. Of course this is not in general possible, but we would like ϕ to be as
“close” to an isometry as possible. How is this to be achieved? An important
point is that the maximum distance between two points in R/Z is 1

2 , and so we
take care to normalize the metric on T so that d(Wi, Wj) ≤ 1

2 .

5.2 Approximate Isometries

From an algorithmic perspective, we desire a process that, given a vector x =
(x1, · · · , xn) which has defined on it a metric d(xi, xj), produces output y =
(y1, · · · , yn) with the distances d(yi, yj) ≈ d(xi, xj). To quantify the sense of
this approximation, we introduce an energy function as follows:

E(y) =
∑

i

∑

j

[
d(yi, yj) − d(xi, xj)

]2

2

If we have a solution y that preserves distance, i.e. for which d(xi, xj) = d(yi, yj),
then it is obvious that E(y) = 0. Conversely, poor solutions will have large
differences d(xi, xj) − d(yi, yj) and so will have large energy E(y). Imagining a
solution as being the state vector of a classical system, we can use the Lagrangian
E to obtain a force on each component of the vector x:

fi = ∂yi
E =

∑

j &=i

(
d(yi, yj) − d(xi, xj)

)
d′(yi, yj)
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In R/Z, the derivative of the metric with respect to the first argument is given
by

d′(a, b) =






0 a ≡ b

0 a ≡ 1 − b

−1 0 ∈ (a, b)

1 otherwise

The approach is then clear: a solution y which minimises E(y) will represent
a map that is locally as close to preserving distance as possible. To find such
a local minima, we choose a random initial solution vector y and solve the
equations of motion numerically. It is important that a friction term is included
to ensure the E(y(t)) → Emin as t → ∞. Essentially we are solving an energy
minimisation problem using the method of gradient descent.

A code implementing this algorithm was tested on the following data set: the
points of a regular polygon in R2 were calculated along with the corresponding
metric Mij = d(xi, xj). A solution y was deemed to be correct if it approximated
the angles of the corresponding points relative to the origin (up to shifting and
reversal). Tests showed that for for all n ≤ 20, 200 timesteps were suffient to
find the correct solution. In other words, the algorithm is both reliable and
computationally fast.

5.3 k-Means

Having solved the problem of representing genome difference via colours, we
must now tackle a technical detail: the size of the population is often |K| > 100.
The above algorithm works well on small sets of 5 or 10 elements, but for larger
numbers it becomes impractical. A key fact is that the population K actually
only contains some number n << |K| of “essentially different” genomes. How
is one to recognise when two genomes are essentially different? Without any
context, this is an arbitrary question. The context is provided by the other
members of the population. We wish to regard two creatures as belonging to
the same species if their weight matrixes are similar relative to the variation in
weight matrices throughout the whole population.

If we know how many species we want to identify in advance to be k, there is
an algorithm known as k-means for partitioning a dataset into k clusters. It
is an iterative procedure to identify the centres of any clustering that might be
present in a high-dimensional data set. Assume our data set {x1, · · · , xn} is
drawn from a vector space V . From V we choose k initial “centroids” —how
they are chosen is unspecified and will be described later —which we denote
{y1, · · · , yk}.

We then assign to each xi the yj to which it is closest, which express as a map
f : {1, · · · , n} → {1, · · · , k} with the property that

(∀j ∈ 1, . . . , k) d(xi, yf(i)) ≤ d(xi, yj)

For each yi we now calculate a new value by taking the centroid of all the xj

assigned to yi:

y′
i =

1

|f−1(i)|

∑

f(j)=i

xj
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Given suitable initial values and iterating the previous step multiple times, the
values yi converge quite quickly to the centroids of any clusters present in the
set {x1, · · · , xn}.

5.4 Initial Centroids

How do we choose initial values for y1, · · · , yk? To evaluate different approaches,
an artificial data set {x1, · · · , x100} was produced:

xi = 10 × (i mod 5) + RandomReal(−1, 1)

By definition this data set is clustered into 5 small regions at values around
0, 10, 20, 30, 40. The k-Means algorithm was applied to this data set, and the
output after a small number of iterations was compared with the true cluster
values. It was quickly discovered that random initial values were not suitable:
often, two centroids would converge to the same cluster, and another cluster
would be excluded. The following approach overcame this problem:

The first centroid y0 is randomly selected from the data set. We then choose
successive yi’s such that min

{
d(yi, yj)

∣∣ j < i
}

is maximized. In several thou-
sand trial runs, this algorithm for choosing initial centroids always resulted in
the correct partitioning of the data set into clusters.

5.5 Summary and Results

We summarise the k-species colouring problem: we wish to partition a pop-
ulation K of creatures into k species, and we wish to colour those species so
that the subjective difference between colours reflects the objective difference
between the underlying weight matrices. This is accomplished by performing
the k-Means algorithm to partition the population into k species, and then
solving an energy minimisation problem using gradient descent to find a good
approximation to an isometry between the genome space and colour space.

Figures 11 and 12 show the results of applying the species colouring algorithm
to a population after 12,000 timesteps. Figure 11 shows the spatial distribution
of the different species on the grid, and Figure 12 shows the underlying weight
matrices associated with each colour. Notice that similar colours have largely
similar weight matrices. Also notice that in the first figure there is a correlation
between spacial proximity and genetic proximity.
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Figure 11: Grid of size 100 × 100 where creatures have been coloured with the
species colouring algorithm (k = 10). Similar species tend to cluster in the same
locations.

Figure 12: Panel presenting weight matrices representative of each
species/colour. Notice that for similar colours, there are similar structures for
the corresponding weight matrices.
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6 Evaluating Fitness

How does one evaluate the extent to which natural selection results in the adap-
tion of creatures to their environment? How does one even know that adaption
has occured, rather than simple “genetic drift”, that is, random variation in the
genome —the neural network weights —with no consequence in behaviour? In
this section we examine various techniques for quantifing adaption, or fitness.

Let us limit ourselves to comparing two seperate creatures, whose relative fitness
is compared in a reproducible way. To do this, we evaluate the performance
of an ensemble of different simulations in which the same two genomes are
present. This approach leverages a key advantage that simulated systems such as
Floatworld have over real biological systems: controlled, repeatable experiments
can be performed using hundreds or even thousands of individual simulations
under identical conditions. This is often impossible or impractical to achieve in
the biological sciences.

By a trial we refer to the simulation of a fixed size grid for a fixed number of
timesteps T , using for the initial population the genome described in Section
3.14. In this section it will be assumed that the population never goes extinct,
i.e. that K(t) "= {} for all t ≤ T . For a single trial we denote by W the set of
all arising genomes:

W =
{
Wk

∣∣ k ∈ K(t), 1 ≤ t ≤ T
}

For all of the following examples we will compare creatures that have been
evolving within a single simulation run. We will consider a sequence of genomes
(Wi)i∈{1,··· ,n}, where ki ∈ K(ti). We wish to evaluate the performance of this
single representative sequence, which we hope will give us a representation
of the evolution of the population as a whole.

The initial and naive approach is to let ti = T · (i/n) and randomly select a
creature ki ∈ K(ti) to obtain each genome Wki

. In other words, a creature is
randomly selected from the population at n successive timesteps. This approach
is flawed for two reasons: the random selection might choose a genetically unfit
creature that is not representative of the population, and it might select crea-
tures from a subset of the population that later becomes an evolutionary dead
end —in familiar terms, we might select a representative of a species that later
goes extinct. The representative sequence will therefore not be representative
in the normal sense of the word.

How do we select a better sequence?

6.1 Creature Lineages

We first introduce some terminology. Let k, k′ be a creature and one of its
offspring. We write Wk′ > Wk if and only if a mutation has been introduced into
k′. This partial order induces a tree structure on W called the phylogenetic
tree, in which the root of the tree is the initial genome W0, and the children of
a node Wi represent all genomes derived from Wi via mutation. By a lineage
of length k we simply mean a sequence of genomes that is an strictly ordered
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chain W0 < W1 < · · · < Wk. In other words a lineage is the analogous structure
to a “family tree” of ordinary sexually-reproducing creatures.

A creature lineage provides a much better way of selecting a representative
sequence, for the reason that a lineage, by definition, represents successive stages
of the evolution of a single species. The Floatworld code can easily be modified
to keep track of such lineages. By choosing an arbitrary creature at the end of a
trial and recalling its lineage, we can obtain a “good” representative sequence.

Often, however, the length k of the lineage is too long. If we wish to obtain a
sub-sequence of length n < k, there are at least two potential methods. The
first, called equal time spacing, is to let ti = T ·(i/(n−1)) for i = 0, · · · , n−1
and select each genome Wi to be the genome in the lineage that was current
at timestep ti. The second, called equal mutation spacing, simply selects
W ′

i = W'k×i/(n−1)) for i = 0, · · · , n − 1, so that it takes genomes at equal
intervals from the original lineage.

We will use equal mutation spacing because, unlike equal time spacing, it pre-
vents periods of rapid evolution from being “lost” within a single time-interval.

6.2 2-way Competition

If we have two seperate genomes, how are we to evaluate their fitness in a
comparative fashion? A simple method is to involve them in direct competition.
To do this, we ‘seed’ a grid with 50 copies of each genome. We then evaluate the
number of each type of creatures after 200 timesteps, during which mutation
is disabled. A genome representing a superior strategy will reproduce itself at
the expense of the other genome, resulting in a larger number Na of the former
than Nb of the latter, after 200 timesteps.

However, we would prefer a single real number in range [−1, 1] to summarise
the results, with −1 indicating the first genome is highly inferior (when Na ≈ 0)
and 1 that the first genome is highly superior (Nb ≈ 0). Intermediate values
represent less significant results, with 0 indicating no discernable difference, i.e.
when Na ≈ Nb. Firstly, this real number should be anti-symmetric, because
exchanging Na with Nb should give the opposite conclusion. Also, absolute
numbers of creatures depend on energy density and other arbitrary factors, so
it makes sense to consider the ratio Na/Nb.

We now try to identify a function f such that f(Na/Nb) has the desired prop-
erties. It is clear that f should be symmetric under inversion, because if we
exchange a and b we want f(Nb/Na) = −f(Na/Nb). One simple continuous
function with this property is f = ln. However we still obtain ln(Na/Nb) = −∞
when Na = 0 and ln(Na/Nb) = +∞ when Nb = 0. To map the range [−∞,∞]
to [1,−1] we use arctan. Then all the desired properties are satisfied by the
following function:

f =
arctan(lnNa/Nb)

π

To get an accurate measure of the relative fitness of the two creatures we repeat
the measurement of f on an ensemble of 100 simulations, and take the average
result. This we call the pair-wise finess of two genomes Wa, Wb, written
fpair(Wa, Wb).
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6.4.1 Population Capacity

We can regard the population capacity, the long-term average population
size, to be an indirect measurement of the efficiency at which individual creatures
use energy to survive and reproduce. A more energy-efficient strategy will result
in a larger average population, all other factors being constant, because more
energy can be expended by members of the population in order to reproduce.

We can evaluate the average population size by seeding a simulation with a
large number of creatures using the relevant genome. We disable mutation, and
continue the simulation for 500 timesteps (=5 creature lifespans) in order for the
population size to stabilize, and then record the average population size over the
next 1000 timesteps. Repeating this process 100 times we obtain an measure of
the population size with low standard deviation, measured on several genomes
to be < 5%.

Figure 15 shows a graph of average population size for all genomes in the 100k19
lineage, the leftmost being the first genome. It is easy to see a trend from the
initial capacity of about 220 creatures to a final value in the range 350-400.

0

50

100

150

200

250

300

350

400

450

500

Figure 15: Average population size for the 100k19 lineage.

6.4.2 Birth Rate

Another measure of how competitive a strategy is the number of offspring a
creature embodying the strategy will produce in its lifetime. To negate the
competition created by the presence of other creatures, we seed a simulation
with only one creature and prevent the creature from reproducing. We do how-
ever count the number of times the reproduce action occurs. The simulation
continues for the entire lifespan of the creature.

Repeating this simulation 100 times and taking the average we obtain the an
estimate of the birth rate —the average number of reproductions a creature
will perform in its lifespan, competition being non-existant.

Figure 16 shows a graph of average birth rate size for 5 seperate trials of length
50k timesteps. The birth rate fluctuates strongly although there is a marked
general trend towards high birth rates as evolution progresses.
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Figure 16: Ensemble birth rate for an individual creature with no competition
for 5 seperate trials of 50k timesteps each.

6.4.3 Migration Rate

The final measure discussed here is that of migration. Migration is the tendency
of creatures to leave the feeding spot they are currently occupying in search of a
new, potentially unoccupied feeding spot. We define this to be the average rate
at which creatures leave a feeding spot, measured in creatures per time step.

In all trials only a single feeding spot is used, with radius 12 and energy density
0.2. As with previous measures, mutation is disabled. Moreover we disable
creature birth and death, opting instead to “respawn” a creature within the
feeding spot when it dies. This prevents the possibility that the population will
fluctuate excessively or go extinct.

The number of creatures that leave a disc of radius 12 is counted and averaged
over 1000 timesteps. The entire process is repeated 20 times to derive an average
migration rate. Figure 17 shows a graph of average migration rate for 5 seperate
trials of length 50k timesteps. A small trend towards greater migration rates is
evident.
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Figure 17: Ensemble migration rate for a population within one feeding spot
for 5 seperate trials of 50k timesteps each.
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6.5 Conclusion

A variety of methods for evaluating creature fitness have been presented, includ-
ing two-way competititon, competition matrices, and ensemble measures such
as population capacity, birth rate, and migration rate. All of these measures
show a general increase in creature efficiency that goes some way to explaining
the pair-wise fitness improvements that can be seen in the competition matrix in
Figure 13. Potentially many more measures could be usefully defined, but these
measures should depend on the details of the strategy one wants to understand.
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7 Implementation

In this section various technical details of the implementation of Floatworld are
discussed.

7.1 Class System

C++ was chosen as the language of implementation. C++ is a robust, object-
oriented language with a reputation for high-performance.

Creat is the class that embodies all the information specific to one creature,
such as age and energy. It sets up internal inputs, calculates the activity of the
creature’s ANN, and determines which action is necessary. Lastly it keeps track
of lineages, including deleting extinct sub-trees of the phylogenetic tree in order
to free up memory.

Matrix handles low-level matrix operations, including memory management,
multiplication of the weight and state vectors of individual creatures, file in-
put/ouput of individual matrices and collections of matrices, and display of
these matrices in a format compatible with LaTeX.

A class called PrimitiveContext encapsulates all the programming routines
that are necessary to draw the grid, individual creatures, and various graphs.
The PrimitiveContext class is sub-classed by both AllegroContext and EPSContext,
which provide interfaces to the Allegro graphics library and the Encapsulated
Post Script vector graphics file format. This allows the same routines to either
draw creatures, matrices, grids and graphs to the screen or to a file that can be
embedded in LaTeX. It is this object oriented design that made the diagrams
in this project possible.

7.2 Performance

Two avenues of exploration become more feasible with an efficient code, and
those are:

• long timescale trials of over 100,000 timesteps

• efficient evaluation of the statistics of large ensembles of simulations

Much effort was spent on optimizing the Floatworld code. A technique known
as profiling was used to identify which parts of the program were preventing
high speed evaluation and these parts were aggressively optimized. Initially, 80-
90% of the running time of a simulation of 10,000 timesteps was spent on the
matrix multiplication of weight matrices with activation vectors. By exploiting
the structure of the weight mask and performing more technical optimizations
this figure was reduced to 10-20% of the running time.

Another major bottleneck was the calculation of vision functions for each crea-
ture. In the original form a kernel matrix was provided and was explicitly
calculated to determine the vision function. Due to the large numbers of ’0s’ in
the kernel matrix, this technique was very slow and accounted for 60% of the
running time of the program after the previous optimization. This bottleneck
was removed by “hard-coding” the structure of the kernel matrix into the vision
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functions, removing the necessity of calculating the kernel product and reducing
the number of memory lookups. Vision functions now account for ±15% of the
running time of the program.

The last major bottleneck was the form of the feeding scheme. The original spot
feeder required every element of the matrices E and E′ to be both written and
read every timestep. Two schemes were attempted to reduce this. The first was
to encode the feeding pattern E′ using run length encoding2. This meant that
the zero elements of the feeding matrix E′ could be ignored, which decreased
the number of memory accesses and therefore sped up the code. Run length
encoding entailed a significant cost, however, because one had to re-encode E′

every time a spot jumped. The overall speed-up from run length encoding was
±10%.

A more successful strategy for reducing the compational burden of the feeding
scheme was to employ stochastic spot feeding as described in Section 3.12. The
first advantage this provided was to avoid calculating the distance from each
cell (u, v) of E to each spot location to determine if the cell was inside a spot.
Instead, each spot calculated a random fraction f of the cells within it and
updated their energy. In other words, if the grid is square and has size n
and contains k spots, the computational complexity of spot feeding went from
O(kn2) to O(fk). Secondly, avoiding the use of a pattern matrix removed n2

memory accesses.

7.3 Performance Measures

We can objectively measure performance by testing how many timesteps the
code can perform per second. This is not a good measure, however, because
updating a small population involves less computational effort that updating a
large population. In fact, the updating of individual creatures comprises the
majority of computational work involved in simulating a grid. To take account
of this, we employ the number of creature-steps per second. Each creature
requires one creature-step per timestep.

The current incarnation of Floatworld can execute ±600, 000 creature-steps per
second on an Athlon 64 2GHz processor with 1 GByte of RAM. This con-
strasts with the original figure from before optimization was performed of 10,000
creature-steps per second. As an example of how to use this figure, we con-
sider a 100 × 100 grid with 20 feeding spots, for which a stable population of
around 400 creatures is normal. Therefore we can expect to simulate around
600, 000/400 = 1500 timesteps per second under these conditions.

2Run length encoding considers a matrix to be a string of numbers by concatenating
successive rows. This string is then compressed by removing “runs” of the same number, such
as (5,5,5,5,5,5), and replacing them with a simple count, in this case (6,5).
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8 Future Work

8.1 Introduction

This project has been about the Floatworld framework. It is not in itself a
research project, it has been about the construction of a framework for per-
forming research in artificial life, including tools that can be used to evaluate
and understand the evolution of artifical organisms within the framework.

The computer code making up Floatworld is written in modern object-oriented
style. Modifications are easy to make and, where possible, use virtual member
functions to achieve easy extensibility. An example is the Feeder class, which
encapsulates a basic feeding scheme that may or may not use a feeding pattern
(both are supported). In addition it supports optional run length encoding and
caching to improve performance.

The spot feeding schemes that have been used in this project are simple classes
derived from the Feeder class, but other schemes would be easy to implement,
including some that are detailed below.

8.2 Creature Interactions

The ability for creatures to interact with one another can be introduced to
Floatworld quite simply. A general principle of neural networks is to make the
number of input and output neurons as small as possible. In order not to need
an extra output neuron to control the ability for one creature to interact with
another, we need only make the simple limitation that two creatures must be
adjacent on the grid for interaction to occur. As only one creature can occupy
a grid cell at a time, a sensible method to enable interaction is to specify that
when one creature attempts to move onto the grid cell occupied by another, an
interaction occurs.

While the scope for creature interaction is large, only three concrete possibilites
are suggested here:

• Predation

• Sexual Reproduction

• Cooperation

We briefly discuss these possibilites.

Predation refers to the situation in which one creature can “attack” another
for its own gain. For such attacks to have any meaning, they must involve the
transfer of energy. More specifically, let k, k′ denote the attacking creature and
its victim. Then the predation rule could be of the form

εk ← εk − α1

εk′ ← εk′ + α2

where α1, α2 are positive constants with α1 > α2 (otherwise mutually attacking
creatures would obtain a net increase in energy).
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Sexual reproduction occurs when the genomes of two creatures are combined
in some way in their offspring, instead of the asexual reproduction that occurs
normally in Floatworld . A small complication is that there is no obvious grid
position in which to instantiate the potential offspring of two creatures, as they
are already adjacent.

One potential solution to this problem, which also happens to solve the question
of how both creatures can mutually decide to reproduce, is to merely allow
interaction to “select” a mate. Any subsequent reproduction will produce an
offspring with a genome that is a combination of both parent genomes. As an
example of how this might occur, let W, W ′ be the two parent genomes. Then
the elements of the child genome W ∗ are:

W ∗
ij =

{
Wij with probability 0.5

W ′
ij otherwise

Co-operation occurs when two creatures cooperate for their mutual gain. In
the context of Floatworld , this could take the form of a small energy reward
when two creatures choose to cooperate. A potential assymetric method could
be the following: when creature k chooses to cooperate with creature k′,

εk ← εk − β1

ε′k ← ε′k + β2

where β1, β2 are small positive constants with β2 > β1. In fact, this does not
result in mutual gain for both creatures: the first creature is actually harmed.
However, it is implicitly enables a form of cooperation because, if both creatures
choose to cooperate with each other, they will both experience a net gain in
energy.

A simple modification to Floatworld was made to enable the above type of co-
operation with values of β1 = 2, β2 = 12. Within 40,000 timesteps a simulation
run yielded a series of small clusters, one of which is shown in Figure 18. These
clusters were highly unstable, growing in size over a period of a few hundred
timesteps before rapidly disintegrating. This has a simple explanation: every
cluster easily falls prey to “cheaters” to neglect to cooperate and obtain en-
ergy at the expense of other creatures. Eventually such cheating destroys the
community of cooperators.

8.3 Hebbian Learning

A possible extension to Floatworld is to introduce ANNs that change over time.
A standard technique known as Hebbian learning is appropriate. In Hebbian
learning, the connection strength (the weight) between two neurons is adjusted
positive whenever their activity is correlated and adjusted negative whenever
their activity is anti-correlated.

A possible implementation is to store a time-averaged activity vector α′ for
each creature that represents the average activity of the creature’s ANN over
the last several timesteps. Each timestep this average activity is used to update
weights according to the Hebbian rule.
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Figure 18: Illustration of clustering behaviour when cooperative interaction is
enabled.

Creatures using Hebbian learning could adjust their strategies during their life-
times. Instead of specifying fixed weights for the ANN in each creature genome,
a genome could consist of “learning rates” for each weight that specify how
rapidly it should be updated. A genome would thus bias certain types of learn-
ing over others.

8.4 Complex Environments

Another potential extension to Floatworld is to implement more complex envi-
ronments. Two ideas are suggested here: environments that consist of a more
complex feeding scheme, and environments that are enriched with extra infor-
mation for creatures to exploit.

As an example of the first idea, consider an environment in which the feeding
spots consist of different radii and energy densities. Creatures would have an
incentive to discover the best possible feeding spot. This type of feeding scheme
might also result in specialisation in which more than several co-existing species
arise that exploit different types of energy source.

Another possibility is if there is a type of “day/night” cycle present in the
feeding scheme, so that energy injection ceases at regular intervals. A natural
question would be whether creatures could adapt to have less energy expenditure
during periods of no energy injection —an analogue to the hibernation of certain
mammals.

An example of the second idea would be if an extra input to the neural networks
is introduced that specifies additional information. This information could be
the distance to the closest feeding spot, or other information pertaining to the
feeding scheme.

35



8.5 Application of Supercomputers

One interesting possible area of research is how Floatworld can be extended to
exploit the vastly increased processing ability of a supercomputer cluster, such
as the BlueGene/P that has recently been installed in Cape Town’s Center for
High Performance Computing. There are two possible ways in which this could
be done:

• code to calculate ensemble averages could easily be parallelised to run simul-
taneously on many machines. This would enable much more accurate estimates,
or alternatively much more computationally challenging measures to be made
feasible.

• extremely large grids, of size in excess of 1000 × 1000, could be efficiently
simulated by partitioning the grids into subgrids that are each handled by an
indiviual machine

8.6 Predicting Pairwise Fitness

In this project, no detailed attempt was made to understand or reverse engineer
any of the strategies that were employed by evolved creatures. The three mea-
sures introduced in Section 6.4 go some way to representing different aspects of
creature strategy, but much more can be done.

An interesting approach would be to derive a large number of single-genome and
pair-wise measures of fitness, and to employ a machine learning algorithm in
order to predict the pair-wise fitness fpair of a large number of different genomes
from these measures. The advantage of this idea is that the machine learning
algorithm could detect patterns that are too difficult to perceive directly. It
could, for example, determine that some measures are much more important
than others in estimating how creatures will behave in a competitive environ-
ment. Such information could aid the attempt to understand creature strategies
in detail.

8.7 Releasing Floatworld as Open Source

Open Source software is free for anyone to view or modify. Releasing software as
Open Source often encourages other programmers and academics to get involved
in the project. Releasing Floatworld as Open Source software could result in a
community of users who use and improve it.
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9 Conclusion

In this project we have performed a quick overview of the topics of genetic algo-
rithms and artificial neural networks. We have reviewed the Floatworld virtual
environment in which digital organisms compete for resources and space, and
reproduce themselves. We have seen evidence that efficient strategies emerge via
natural selection even when starting from an exceedingly simple initial strategy.

We have examined tools for classifying creatures into various species and evalu-
ating their genetic similarity. We have also defined measures and algorithms to
compare two species to guage their relative fitness, and have examined these
measures in the context of single-genome measures that suggest that more
evolved creatures implement more efficient strategies.

Lastly we have summarised some of the technical aspects of the Floatworld
code. We have also suggested avenues for future work. In conclusion Float-
world presents an interesting framework for studying simulated evolution and
potentially a powerful tool for new research in the field of Artificial Life.
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